THE TRUTH ABOUT ESSENTIAL FATTY ACIDS

The Truth About Essential Fatty Acids

Dr. Hank Liers, PhD essential fatty acidsMany in the field of nutrition have lost sight of the fact that there are two essential fatty acids needed by the body. Many people recommend omega-3 fatty acids assuming the the body gets sufficient omega-6 from the diet. The truth about essential fatty acids is more complicated. This article will show the more complete and correct picture.

BACKGROUND

Fatty acids are part of the lipids class, widely found in nature, food, and organisms. These fatty acids are a critical constituent of the cell membranes in all of the trillions of cells in the body. They have important biological functions including structural, communication, and metabolic roles, and they represent an important source of energy. Their metabolism produces a huge quantity of adenosine triphosphate (ATP). The beta-oxidation of the fatty acids is a well-known process, mostly used by the heart and the muscular tissue to obtain energy.

Figure 1 below shows a schematic diagram of what a fatty acid looks like. One end of the structure in all cases has a carboxylic acid group (COOH) and the other end in all cases has a methyl group (CH3). Saturated fats have single bonds (-) between all carbon atoms (C), but unsaturated fats have a number of double bonds (=) between some of the carbon atoms.


essential fatty acids

Figure 1 – Basic diagram of fatty acids structure

The human body can synthesize many of these fatty acids, except the essential fatty acids (PUFAs) linoleic acid (LA) and alpha-linolenic acid (ALA). These two are generally found in various vegetable oils, but their important metabolites are found mainly in special vegetable oils such as borage oil and in fish oils. Linoleic acid is the most abundant fatty acid in nature, and it is the precursor of other omega-6 fatty acids. Omega-3 fatty acids are synthesized from alpha-linolenic acid.

Once ingested, short-chain PUFAs are converted to long-chain fatty acids. These are critical for mammalian cells in order to perform various biological functions, such as sustaining the structural integrity of cellular membranes and serving as signaling molecules. They are highly enriched in brain tissues, where they participate in the development and maintenance of the central nervous system during both embryonic and adult stages.

Polyunsaturated fatty acids have been extensively researched. They include the essential fatty acids linoleic acid (an omega-6) and alpha linolenic acid (an omega-3). Omega-3s are not abundant in our food chain. There is none in corn oil and very little in soy oil, the two most widely used food oils. Therefore, nearly all the early research with polyunsaturated oils utilized omega-6 fatty acids, predominantly as linoleic acid.

Fish oils were neglected out of ignorance or because the investigators chose to pass over these cholesterol-containing oils. Concern eventually developed over the close association between increasing incidence of mammary tumors and high intake of omega-6 polyunsaturated fatty acids. After some years, researchers finally turned their investigations to the interrelationship between dietary omega-6 and omega-3 fatty acids.

FATTY ACID METABOLIC PATHWAYS

The following diagram shows in detail the pathways for the production and use of fatty acids in the body. In the figure the metabolic pathways (running left to right) for four fatty acids types are shown (top – Omega-3, second – Omega-6, third – Omega-9, bottom – Omega-7). Notice that only the omega-3 and omega-6 oils are considered to be essential fatty acids because they cannot be made in the body. This means they must come from food.

essential fatty acids

Figure 2 – fatty acid metabolism pathways in the body

The diagram shows a series of enzyme induced reactions that either add a double bond or two additional carbon/hydrogen pairs to the fatty acid. The enzymes that make this happen are called desaturase and elongase. The desaturase enzymes are given a number for the carbon number (that the enzyme is working on) from the methyl end of the fat. These same enzymes work on all of the fatty acid types. For example, Delta 6 desaturase causes an additional double bond to be inserted into both alpha-linolenic (omega-3) and linoleic acid (omega-6) (as well as oleic acid and palmitoleic acids).

In this way, the body is able to produce a wide variety of fatty acids that have their own unique effects on biochemistry. Some of these are more important than others. In particular, the omega-3 essential fatty acid eicosapentanoic acid (EPA), the omega-6 essential fatty acid dihomo-gamma-linolenic acid (DGLA), and the omega-6 essential fatty acid arachidonic acid (AA) are precursors for a class of chemicals called eicosanoids/prostaglandins that have far reaching affects on key body functions.

EICOSANOIDS/PROSTAGLANDINS

Eicosanoids are prostaglandins that affect many aspects of health both positively and, in some cases, negatively. All known eicosanoids and prostaglandins are formed from the essential fatty acids linoleic acid (omega-6, or n-6), alpha linolenic acid (omega-3, or n-3), their “enhanced” derivatives, and from the omega-3 fatty acids in fish oils.

Prostaglandins are short-lived highly active, hormone-like chemicals that are found in every cell of the body. They are regulators of cell activity and essential for maintaining health. Each cell type or organ produces its own form of prostaglandin to carry out its functions. There are three types of prostaglandins: PG1, PG2, and PG3.

Series 1 Prostaglandins (PG1), derived from gamma-linolenic acid (GLA), the active component of borage oil, has many beneficial effects: It makes platelets less sticky, lowers blood pressure by relaxing smooth muscles in the walls of arteries, increases loss of sodium and water, decreases inflammation and enhances immunity.

Series 2 Prostaglandins (PG2), also derived from GLA, is used in “fight or flight” (stress) situations, – the fight against danger, or the flight from it. In modern lifestyles which are high in stress but low in physical activity, continuous production of Series Two Prostaglandins results in sticky platelets, high blood pressure, increased water and sodium retention, increased inflammation and decreased immune system capabilities.

Series 3 Prostaglandins (PG3), derived from eicosapentaenoic acid (EPA), the active component of fish oil, has beneficial effects. They block the detrimental effect of the Series 2 Prostaglandins, preventing them from being made in the body. As a result the platelets are less sticky, blood pressure is lower because the muscles in the walls of our arteries remain relaxed, loss of sodium and water by the kidneys takes place more effectively, inflammation response is decreased, and immune function is efficient.

It is now known that the ratios of these dietary fatty acids are very important. Consumption of linoleic acid leads to production of the enhanced fatty acid, arachidonic acid (20:4n-6). Prostaglandins based on arachidonic acid exacerbate stress and inflammatory states, and suppress immunoprotective functions (i.e. resistance to disease). Too much linolenic acid and other omega-3s may cause excessive bleeding during injury, surgery, or childbirth. Large amounts of any of these unsaturated fatty acids in the diet without a compensatory increase in antioxidant nutrients (especially Vitamin E), can speed oxidative damage to tissues, resulting in accelerated aging while increasing the risk of degenerative diseases.

Yet, a balanced ratio of both omega-3 and omega-6 fatty acids in the diet offers very positive health benefits. When omega-3 fatty acids predominate, the body will produce less arachidonic acid (20:4n-6). Immunity improves and inflammation subsides.

Essential Fats

Unfortunately, our Western diet has been almost devoid of omega-3 fatty acids. Creating the optimum intake of omega 3-to-omega 6 unsaturated fatty acids has become, therefore, an issue of prime importance for anyone concerned with health. We need to evaluate carefully the amounts of linoleic acid (n-6) we consume relative to our intake of alpha-linolenic acid (18:3n-3) and fish oils (EPA:20:5n-3 and DHA:22:6n-3).

ESSENTIAL FATTY ACIDS – PATHWAYS

The diagram in Figure 3 shows details of the omega-6 and omega-3 pathways. Pathway specifics indicate key eicosanoids (series 1 prostaglandins, series 2 prostaglandins, and series 3 prostaglandins), oil sources, and important nutrient cofactors that are needed for the reactions to take place.

essential fatty acids

Figure 3 – Essential Fatty Acids – pathways in the body

The information is this diagram gives the clues we need in order to provide optimal types and amounts of omega-6 and omega-3. For example, I have chosen for my essential fatty acid product cold pressed borage oil as the best natural source of gamma linoleic acid (GLA). It contains 20% by weight — the highest amount found in natural oils.

RESEARCH ON ESSENTIAL FATTY ACIDS

Work by Chapkin et. al. (see references 1–4 below) has identified the potent synergistic relationship between GLA, an omega-6 fatty acid, and the well-known omega-3 fatty acids. Chapkin has shown that, rather than simply the quantity of dietary omega-3s, it is the ratio of omega-6 to omega-3 fatty acids that is important in achieving full cardiovascular health and inflammatory control.

Furthermore, Chapkin has identified the ideal ratio. His published work deals with the importance of mixed diets supplying both linoleic and linolenic acids. To underscore the importance of these two fatty acids, refined oil supplements rich in enhanced forms were used. “Enhanced forms” are fatty acids derived from the original. They are one or more steps closer to the actual eicosanoid. In the human body, alpha linolenic acid (18:3n-3) is eventually converted to eicosapentaenoic acid (EPA, 20:5n-3) and linoleic acid (18:2n-6) is converted to gamma-linolenic (GLA, 18:3n-6) as its first enhanced form. Both enhanced fatty acids are precursors to eicosanoids.

In Chapkin’s research, superior health benefits were delivered by the mixed diet that supplied the eicosanoid precursors in a specific ratio. The balanced ratio of enhanced Omega-6 (GLA)-to-Omega-3 (EPA) fatty acids was 1:4.

IMPLEMENTATION OF THE SCIENCE

Based upon the science discussed above, I developed a product with the correct Omega-6 (GLA)-to-Omega-3 (EPA) ratio and with proper amounts. It is available to you as Hank & Brians Essential Fats Plus E from Health Products Distributors, Inc. (HPDI).

Essential Fats Plus E

ESSENTIAL FATS PLUS E IS A HIGHLY ADVANCED ESSENTIAL FATTY ACIDS SUPPLEMENT
OFFERING SPECIAL BENEFITS:

  1. UNIQUE COMBINATION — Essential Fats (EPA, DHA, GLA) plus Vitamin E. This unique formula offers more than one type of Vitamin E (not just d-alpha-tocopherol) and balanced essential fats.
  2. BALANCED ESSENTIAL FATS— Many EFA supplements contain only omega-3s, but for optimal function the body requires a balance of omega-3 and omega-6 essential fats. In addition, our special formula provides a 4-to-1 ratio of EPA to GLA in order to achieve a balance you need for optimal health.
  3. FULL-SPECTRUM VITAMIN E — Tocotrienols and tocopherols in this formula are natural vitamin E substances derived from oryza rice bran oil and protect polyunsatured EFAs against free-radical damage both in the capsule and in your body. Many Vitamin E supplements contain only d-alpha tocopherol, which is only a single component of the full-spectrum Vitamin E in this formula.
  4. ULTRAPURE — Molecularly distilled oils of extremely high-purity containing no PCBs, heavy metals, or oxidized contaminants. Free of excipients, additives, and common food allergens!

COMPOSITION: Six softgel capsules provides the following percentages of the Daily Value.

NUTRIENT AMOUNT % Daily Value†
EPA (Eicosapentaenoic Acid 20:5 omega 3)
(from 2,000 mg of purified fish oils)
360 mg *
DHA (docosahexaenoic Acid 22:6 omega 3)
(from 2,000 mg of purified fish oils)
240 mg *
GLA (Gamma Linolenic Acid 18:3 omega 6)
(from 450 mg of cold pressed borage seed oil)
90 mg *
Vitamin E (d-alpha-tocopherol) (from 180 mg of Oryza rice bran oil) 24 IU 81%
Mixed Tocotrienols (d-gamma, d-alpha, and d-delta)
(from 180 mg of Oryza rice bran oil)
28.8 mg *

* No established Daily Value
† Daily Values based on a 2,000 calorie diet

IMPORTANT FUNCTIONS OF ESSENTIAL FATTY ACIDS

Below we provide some of the functions and benefits obtained when by diet or supplementation the correct ratios and amounts of essential fatty acids are consumed.

• Regulate steroid production and hormone synthesis
• Regulate pressure in the eyes, joints, and blood vessels
• Regulate response to pain, inflammation, and swelling
• Mediate Immune Response
• Regulate bodily secretions and their viscosity
• Dilate or constrict blood vessels
• Regulate smooth muscle and autonomic reflexes
• Are primary constituents of cellular membranes
• Regulate the rate at which cells divide
• Necessary for the transport of oxygen from the red blood cells to tissues
• Necessary for proper kidney function and fluid balance
• Prevent red blood cells from clumping together
• Regulate nerve transmission

GENETIC TESTING AND ESSENTIAL FATTY ACIDS

Please note that genetic testing for a wide range of genes and the enzymes they produce has indicated that essential fatty acids can be an important factor in helping the body overcome a variety negative gene variations. These negative gene variations include genes that relate to: 1) Inflammatory Response, 2) Exercise Performance, 3) Exercise Recovery, 4) Cardiovascular Fitness, 5) Body Composition, and 6) VO2 Max, Aerobic Capacity.

We will discuss this more deeply in a future blog article.

CONCLUSION

The body is best protected from a range of health issues when we supply a mixed diet of both omega-3 and omega-6 essential fatty acids. Studies show that we do not need to consume large amounts of fatty acids if the ratio is correct. These findings indicate that, for a typical human body, amounts of 90 mg GLA (18:3n-6) to 360 mg EPA (20:5n-3) taken daily will provide for the optimum production of the three major prostaglandins. These amounts are found in Hank & Brians Essential Fats Plus E.

REFERENCES

The following includes abstracts of Chapkin’s published research on essential fatty acids.

REFERENCE 1

Chapkin RS Somers SD Erickson KL

Dietary manipulation of macrophage phospholipid classes: selective increase of dihomogammalinolenic acid.

In: Lipids (1988 Aug) 23(8):766-70

Because alterations in the dietary content of fatty acids are an important method for modulating macrophage eicosanoid production, we have quantitated the levels of n-6 and n-3 polyunsaturated fatty acids in peritoneal macrophage individual phospholipids from mice fed diets (3 wk) with either safflower oil (SAF), predominantly containing 18:2n-6, borage, (BOR) containing 18:2n-6 and 18:3n-6, fish (MFO) containing 20:5n-3 and 22:6n-3, and borage/fish mixture (MIX) containing 18:2n-6, 18:3n-6, 20:5n-3 and 22:6n-3. Dietary n-3 fatty acids were readily incorporated into macrophage phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The increase in n-3 fatty acid levels was accompanied by a decrease in the absolute levels of 18:2n-6, 20:4n-6 and 22:4n-6 in PC, PE and PS. Interestingly, PI 20:4n-6 levels were not significantly lowered (P greater than 0.05) in MIX and MFO macrophages relative to SAF and BOR. These data demonstrate the unique ability of this phospholipid to selectively maintain its 20:4n-6 levels. In BOR and MIX animals, 20:3n-6 levels were significantly increased (P less than 0.05) in all phospholipids relative to SAF and MFO. The combination of borage and fish oils (MIX diet) produced the highest 20:3n-6/20:4n-6 ratio in all phospholipids. These data show that the macrophage eicosanoid precursor levels of 20:3n-6, 20:4n-6 and n-3 acids can be selectively manipulated through the use of specific dietary regimens. This is noteworthy because an increase in phospholipid levels of 20:3n-6 and 20:5n-3, while concomitantly reducing 20:4n-6, may have therapeutic potential in treating inflammatory disorders.

Institutional address: Department of Human Anatomy School of Medicine University of California Davis 95616.

 

REFERENCE 2

Chapkin RS Carmichael SL

Effects of dietary n-3 and n-6 polyunsaturated fatty acids on macrophage phospholipid classes and subclasses.

In: Lipids (1990 Dec) 25(12):827-34

This study examined the effects of n-3 and n-6 polyunsaturated fatty acid alimentation on murine peritoneal macrophage phospholipids. Mice were fed complete diets supplemented with either corn oil predominantly containing 18:2n-6, borage oil containing 18:2n-6 and 18:3n-6, fish/corn oil mixture containing 18:2n-6, 20:5n-3 and 22:6n-3, or fish/borage oil mixture containing 18:2n-6, 18:3n-6, 20:5n-3 and 22:6n-3. After two weeks, the fatty acid levels of glycerophosphoserines (GPS), glycerophosphoinositols (GPI), sphingomyelin (SPH), and of the glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) phospholipid subclasses were determined. We found that mouse peritoneal macrophage GPC contain primarily 1-O-alkyl-2-acyl (range for the dietary groups, 24.6-30.5 mol %) and 1,2-diacyl (63.2-67.2 mol %), and that GPE contains 1-O- alk-1′-enyl-2-acyl (40.9-47.4 mol %) and 1,2-diacyl (44.2-51.2 mol %) subclasses. In general, fish oil feeding increased macrophage 20:5n-3, 22:5n-3 and 22:6n-3 levels while simultaneously reducing 20:4n-6 in GPS, GPI, GPE and GPC subclasses except for 1-O-alk-1′-enyl-2-acyl GPC. Administration of 18:3n-6 rich diets (borage and fish/borage mixture) resulted in the accumulation of 20:3n-6 (2-carbon elongation product of 18:3n-6) in most phospholipids. In general, the novel combination of dietary 18:3n-6 and n-3 PUFA produced the highest 20:3n-6/20:4n-6 phospholipid fatty acid ratios. This study demonstrates that marked differences in the responses of macrophage phospholipid classes and subclasses exist following dietary manipulation.

 

REFERENCE 3

Fan YY Chapkin RS

Mouse peritoneal macrophage prostaglandin E1 synthesis is altered by dietary gamma-linolenic acid.

In: J Nutr (1992 Aug) 122(8):1600-6

The ability of dietary gamma-linolenic acid [18:3(n-6)] to modulate prostaglandin biosynthesis in mouse resident peritoneal macrophages was determined. Mice were fed diets containing corn oil, borage oil or evening primrose oil or a mixture of borage and fish oils. After 2 wk, resident peritoneal macrophages were isolated and stimulated with unopsonized zymosan to induce prostaglandin synthesis. Borage oil, primrose oil and fish-borage oil mixture dietary groups (containing 25.6, 11.9 and 19.5 g gamma-linolenic acid/100 g fatty acids, respectively) had significantly (P less than 0.05) enhanced prostaglandin E1 synthesis (39.7, 29.4 and 73.0 nmol prostaglandin E1/mg protein, respectively) compared with corn oil-fed (containing less than 0.1 g gamma-linolenic acid/100 g fatty acids) animals, which synthesized less than 0.1 nmol prostaglandin E1/mg protein. Borage oil- and fish-borage oil mixture-fed mice had the highest biosynthetic ratio of prostaglandin E1/prostaglandin E2 (E1/E2 approximately 0.2). Macrophages from borage oil-fed mice synthesized the lowest amount of prostacyclin (198.7 nmol 6-keto-prostaglandin F1 alpha/mg protein) compared with corn oil-, primrose oil- and fish- borage oil mixture-fed mice (379.7, 764.8 and 384.2 nmol 6-keto- prostaglandin F1 alpha/mg protein, respectively). In addition, borage oil-, primrose oil- and fish-borage oil mixture-fed mice had significantly (P less than 0.05) higher levels of dihomo-gamma- linolenic acid [20:3(n-6)] in membrane phospholipids (5.5, 3.5 and 5.7 mol/100 mol, respectively) relative to corn oil-fed mice (2.0 mol/100 mol).

 

REFERENCE 4

Fan YY Chapkin RS Ramos KS

Dietary lipid source alters murine macrophage/vascular smooth muscle cell interactions in vitro.

In: J Nutr (1996 Sep) 126(9):2083-8

This study was conducted to compare the impact of dietary lipids on the ability of macrophages to modulate vascular smooth muscle cell (SMC) DNA synthesis in vitro. C57BL/6 female mice were fed six different diets (6 mice/diet) containing 10% fat from corn oil (CO), borage oil (BO), primrose oil (PO), fish-corn oil mix (FC, 9:1, w/w), fish-borage oil mix (FB, 1:3, w/w), or fish-primrose oil mix (FP, 1:3, w/w) for 2 wk. Peritoneal macrophages were isolated from these mice, stimulated with zymosan or vehicle, and subsequently co-cultured with naive mouse aortic SMC in the presence of 3H-thymidine to measure SMC DNA synthesis. In this co-culture system, macrophages were seeded on 25-mm culture inserts (upper chamber) and SMC were seeded on 35-mm culture dishes (lower chamber). The two cell types were separated by a semipermeable membrane with a 30-kD cut-off. When quiescent SMC were co-cultured with macrophages, only the PO and FP diet groups had significantly (P < 0.05) lower SMC DNA synthesis compared with the control CO group whose diet contained no gamma- linolenic acid (GLA) or (n-3) polyunsaturated fatty acids (PUFA). In contrast, when cycling SMC were co-cultured with diet-modulated macrophages, all dietary groups except for those fed FC had significantly lower (P < 0.05) SMC DNA synthesis relative to the CO group. Although the level of GLA in PO and BO diets was different (11.5 and 22.3 g/100 g fatty acids, respectively), these treatments exerted comparable inhibitory effects on SMC DNA synthesis. The FP treatment consistently exhibited the lowest SMC DNA synthetic profile among the six dietary groups irrespective of SMC growth conditions. These data suggest that BO and PO alone or in combination with fish oil influence macrophage/smooth muscle cell interactions in a manner consistent with favorable modulation of the atherogenic process.

These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure or prevent any disease.

BOOKS

  1. Enig, Mary G. Know Your Fats: The Complete Primer for Understanding the Nutrition of Fats, Oils, and Cholesterol. Bethesda Press, 2000.
2

THE NEED FOR IODINE SUPPLEMENTATION

Dr. Hank Liers PhD iodine supplementationFred Liers PhD iodine supplementationThe Orthomolecular Medicine News Service (OMNS) published on June 12 “The Need for Iodine Supplementation.” We believe strongly in the need for iodine supplementation, especially given the fact that more than 90% of the US population is iodine deficient. For this reason we make available both Nascent Iodine and Lugol’s Iodine Solution 2 to our customers.

We present the full OMNS article (below), as a source of valuable information to our resellers and Creating Health Naturally readers. The factors contributing to massive-scale iodine deficiency remain virtually unchanged over decades. This has led to a greater need for educating health professionals and individuals about the critical importance of iodine supplementation.

Another useful article discussing the benefits of iodine supplementation was published August 2 by Dr. Mark Sircus, OMD: “Iodine, Thyroid and Low Body Temperature.” ~

The Need for Iodine Supplementation

by Wojciech Rychlik, PhD

(OMNS, June 12, 2017) Feeling tired, having low energy or depression, gaining weight, memory problems, having dry skin, dry mouth, or immune system issues? There is good chance your body needs iodine supplementation. Why iodine? Because this essential to human health element has been singled out as dangerous, for several obscure reasons, and it has been gradually eliminated from our diet, and even worse, replaced by its antagonist, bromine. This trend has been termed, iodophobia (1). It is a cause of widely occurring hypothyroidism in many developed countries.

Iodine: How Much?

Iodine deficiency is associated with (2, 3, 4):

  • Fibrocystic breast disease leading to breast cancer and stomach cancer
  • Goiter (enlarged thyroid)
  • Mental issues from reduced alertness, lowered IQ, autism to cretinism, lack of iodine for the fetus leads to cretinism, and in milder cases to autism and ADHD
  • Slow metabolism, leading to tiredness, sluggishness, fatigue, apathy, depression, and insomnia
  • Inability to produce saliva, dry skin, and lack of sweating
  • Lack of optimal detoxification, especially of bromides, fluorides, and heavy metals
  • Sensitivity to temperature changes, and cold hands and feet
  • Muscle pain, fibrosis, and fibromyalgia
  • Erectile dysfunction, infertility and miscarriages, and low sex drive
  • Overweight
  • High blood pressure, and increased incidence of heart attacks and strokes

The Food and Agriculture Organization (FAO) of the United Nations has published probable safe upper limits for dietary intake of iodine (5). They range from 150 micrograms (mcg) per kilogram (kg) per day in newborn infants to 30mcg/kg/day in adults. That is 2 milligrams (2,000 micrograms) daily for a 146-pound adult. The safe upper limit is higher during pregnancy and lactation (40 mcg/kg/day).

Treatments for Hypothyroidism

The simplest method to deal with an underactive thyroid is proper supplementation with iodine, called orthoiodosupplementation. If the thyroid is damaged, then supplementation with thyroid hormones, thyroxine (T4) and triiodothyronine (T3, the main biologically active hormone) may be necessary. Supplementation (6). with these hormones should be done under close supervision of a medical professional. However, supplementation with inorganic iodine is generally much safer, as the body “knows” how much T4 and T3 need to make. There are also drugs that change physiology of iodine metabolism, but this subject is beyond the scope of this article. Pharmaceutical companies pressure doctors to avoid inexpensive orthoiodosupplementation, so you won’t likely get a prescription for inexpensive Lugol’s solution from a mainstream practitioner.

One caveat to supplementation with iodine is the autoimmune illness called Hashimoto’s disease, or chronic lymphocytic thyroiditis, which is one of the potential causes of hypothyroidism. Unfortunately, when hypothyroidism is diagnosed, the possibility that Hashimoto’s disease underlies this condition has not always been properly tested. Therefore, Hashimoto’s disease has often been misdiagnosed. Doctors usually treat this condition with hormone replacement therapy, and some believe that excessive iodine intake may trigger it in susceptible people (7). Always ask your doctor if iodine supplements are right for you.

History of Iodine Usage and “Iodophobia”

This subject has been covered in detail by Dr. Guy E. Abraham (8,9,10). The iodine element was discovered in 1811 by B. Courtois. In 1850–1853 A. Chatin noted that goiter and cretinism are rare in geological zones rich in iodine and frequent where iodine is in short supply, and that goiter can be prevented by iodine supplementation. In 1895 E. Baumann proposed that iodine is the active element in the thyroid gland.

By the time Bauman identified large concentrations of iodine in the thyroid gland in 1895, pharmaceutical and apothecary preparations containing iodine, excluding thyroid extracts, were widely used as a panacea.

To quote Kelley: (11) “The variety of diseases for which iodine was prescribed in the early years is astonishing – paralysis, chorea, scrofula, lacrimal fistula, deafness, distortions of the spine, hip-joint disease, syphilis, acute inflammation, gout, gangrene, dropsy, carbuncles, whitlow, chilblains, burns, scalds, lupus, croup, catarrh, asthma, ulcers, and bronchitis – to mention only a few. Indeed, tincture of iodine, iodoform, or one of the iodides, was applied to almost every case that resisted the ordinary routine of practice; and between 1820 and 1840 there appeared a remarkable series of essays and monographs testifying to the extraordinary benefits to be achieved by this new and potent remedy.”

Unfortunately, these monographs have virtually disappeared from US medical libraries. In the mid-1800s, iodine treatments of some diseases called for ingestion of gram (1,000 mg) amounts per day. However, most treatments were from 5 to 50 mg daily. The recommended daily amount of iodine by Dr. G. E. Abraham is 0.1-0.3 ml Lugol containing 12.5-37.5 mg elemental iodine. This is the amount of iodine needed for whole body sufficiency, based on a recently reported iodine/iodide-loading test (12). Thyroid gland sufficiency for iodide is achieved with a lower dose.

Lugol's iodine supplementation

The first iodophobic authority emerged in early 1900s. Prof. T. Kochler reported that he suffered from overactive thyroid following ingestion of iodide (just a single individual case, not a statistical research study!) Despite this, the number of applications grew. In an International Index published in 1956, and devoted exclusively to iodine pharmaceuticals, no less than 1,700 approved iodine-containing products were listed. In 1948 Wolff and Chaikoff published that a serum inorganic iodide level at a concentration of 1 µM blocks (one micromolar) the synthesis of thyroid hormones, resulting in hypothyroidism and goiter in rats. But this conclusion was erroneous as they even did not measure thyroid hormones in the rats studied, and of course, hypothyroidism and goiter were not observed in those rats. Many organic forms of iodinated drugs were quite poisonous. Unfortunately, medical establishment did not make a distinction between organic and inorganic forms of iodine, and iodophobia became more popular.

Decades ago, iodine was added to bread so that one slice contained 150 mcg of iodine (the current recommended daily allowance). In the 1980s, bromine replaced iodine in bread. Since bromide is an antagonist to iodine (it is goitrogenic), it worsened iodine deficiency in the US. Moreover, a big push to remove salt from our diet (the only grocery item still supplemented with iodine) exacerbated the problem. The only developed nation that resisted iodophobia is Japan, statistically the healthiest and longest living nation on the planet. Their average daily consumption of iodine is around 5 mg, with various reports ranging from 1 mg to 18 mg. In a study of reported daily iodine intake versus total number of clinical symptoms, an intake of approximately 1 mg per day correlated with the lowest number of reported symptoms, that is, the highest level of health (13). Recent popularization of bromides in our food supplies likely increased this amount.

According to Dr. Abraham, (14) “proper amounts of iodine in the food supply should be considered one of a nation’s greatest assets. Removing iodine from the food supply is a major mistake. Supplying a daily intake of iodine sufficient for the whole body (100-400 times the RDA) gives protection against goitrogens and radioactive iodine/iodide fallout; improves immune functions, resulting in an adequate defense system against infection; decreases singlet oxygen formation which is the major cause of oxidative damage to DNA and macromolecules, resulting in an anticarcinogenic effect in every organ; results in a detoxifying effect by increasing urinary excretion of the toxic metals lead, mercury, cadmium, and aluminum, as well as the goitrogens fluoride and bromide; normalizes hormone receptor functions resulting in improved response to thyroid hormones both endogenous and exogenous; and results in better control of blood sugar in diabetic patients; stabilizes cardiac rhythm, obviating the need for the toxic sustained release form of iodine, amiodarone; and normalizes blood pressure without medication in hypertensive patients. Iodine deficiency is the major cause of cognitive impairment, worldwide.”

The Iodine-Cancer Connection

The body requires iodine to metabolize both omega-3 and omega-6 fatty acids. A substance called delta-iodolactone, a derivative of arachidonic acid, which is produced in the thyroid gland and breast tissue, prostate, colon, and the nervous system, is a regulator of a process called cellular apoptosis (“cell death”). Ascorbic acid is required to stimulate intracellular hydrogen peroxide synthesis that, in turn, provides the energy to make iodine free radicals necessary for this reaction. When the level of delta-iodolactone is high enough, the process of apoptosis can then kill cancer cells. (15)

Unfortunately, the recommended daily allowance (RDA) for iodine — about 150 mcg per day — will not allow delta-iodolactone to be efficiently formed in the thyroid gland. The thyroid requires higher iodine concentrations to efficiently produce it. Researchers have found that 100 times the RDA amount of iodine is optimal to produce delta-iodolactone. That equates to taking about 15 mg of iodine per day (15,16). These findings are important because they imply that there are some biochemical reactions that require much larger amounts of iodine than the current RDA. The mechanism by which delta-iodolactone induces cell death may be an important pathway for curing some types of cancer.

Forms of Iodine

Inorganic iodine exists in 6 oxidative states, from -1 to +7. The most reduced form (with most electrons) is iodide (I); an example is potassium iodide. The diatomic form of elemental iodine I2, has no electrical charge. Monoatomic iodine also has no electrical charge, but is unstable and highly reactive (free radical, labeled as an I with a dot, I* ). It can be produced by exposing I2 to ultraviolet light. Electric and magnetic fields won’t do it, as is sometimes incorrectly suggested. More oxidized forms of iodine are: hypoiodite (I+1), iodite (I+3), iodate (I+5), and periodate (I+7). The body’s metabolism may convert (reduce) these forms to biochemically available iodide, but at the cost of depleting its antioxidants. All forms of positively charged iodine are relatively poisonous, with established lethal doses (LD50) in the range of 35 to 2100 mg/kg. Elemental iodine (I2) and iodides (I) are non-poisonous. However, a bad “antiseptic” non-culinary taste of iodine (I2) suggests to our senses that this is not so good choice for supplementation.Nascent iodine supplementation

Despite that adverse taste, almost all the research on iodine supplementation has been done using Lugol’s Solution (17). The original solution is called 5% Lugol’s Iodine, but in reality it consists of 12.5% iodide/iodine or (I/[I3]) ions. Two drops of Lugol’s Solution (0.1 ml) contain 12.5 mg iodine/iodide mix. Iodine tablets that are a solid form of Lugol’s solution, were created to mask the taste and make the doses more precise for dietary supplementation.

I should mention a few points about Edgar Cayce’s atomidine. This famous visionary wrote several articles about the best form of iodine supplement (18). Some claim that this was iodine trichloride, but that cannot be true as this compound is toxic by ingestion and damaging to mucous membranes. It decomposes to ICl and poisonous gas Cl2 at 77 degrees C and also in water at room temperature (19). Most likely Cayce’s atomidine was simply a 1% iodine solution (I2) in 95% ethanol. I am surprised that there are educated people, even medical doctors who claim that “elemental monoatomic iodine” preparations (Atomidine, Nascent Iodine etc.) are the best forms of iodine supplements. May be it has something to do with efficient marketing? Elemental Iodine (I2) is soluble in glycerin. Replacement of ethanol with glycerol indeed makes these supplements more consumption-friendly, so they are sold by some vendors as superior products to Cayce’s ethanol-formulated one. Personally, I think glycerol-based I2 supplements are inferior to iodides; however, they are excellent antiseptics.

To defend the validity of Cayce’s vision, in thyroid, I ion and amino acid tyrosine react through a short intermediate step by forming monoatomic I* free radical (selenium and hydrogen peroxide are involved) to make monoiodotyrosine. Diiodotyrosine is formed analogical way, and finally, two of these molecules combine to produce thyroxine. All those steps are carried by the enzyme thyroid peroxidase, which is normally attached to the protein thyroglobulin. So, yes, monoatomic iodine I* exists in human bodies, and it directly reacts with tyrosine, but no, it wouldn’t be healthy to consume iodine free radicals as their high reactivity would prevent safe transport throughout the body.

In the mid-1930s the thyroid hormone thyroxine became available on the market. This was a blessing for people who had damaged their thyroid. Unfortunately, doctors started to prescribe this hormone to just about anybody with hypothyroidism, thinking that they can control better thyroid hormone levels than our bodies can. And, the “iodine is iodine, no matter what form” mentality became a dangerous trend, because most medical professionals do not fully appreciate the difference between the raw nutrient (iodine) and its product (hormone).

The pharmaceutical industry came up with lots of organic forms of iodine (NB: organic, meaning that iodine is bound to a carbon-atom-containing molecule and NOT meaning it’s grown in a pesticide-free environment), all relatively toxic and certainly not to be used without strict medical supervision. Only inorganic forms of iodine, I and I2, are safe for supplementation (20,21). Further, high doses of these supplements should still be supervised by your doctor.

Iodine Uses

Iodine plays critical role in human metabolism. Many researchers believe the RDA value of 150 mcg for iodine is too low, especially when this element is commonly substituted with competing element bromine. Therefore, the main use of iodine in dietary supplementation is to enable optimal thyroid function. There are a number of medical conditions where iodine is either essential or helpful. For best results, iodine/iodide should be supplemented with selenium, magnesium, copper (there is usually enough of it in tap water as copper is widely used in plumbing), vitamin B2 (riboflavin) and B3 (niacin). Ask your doctor before taking any iodine supplements, especially if you are on medications.

Elemental iodine (I2) is antibacterial and antifungal, so iodine or iodine/iodide solutions are commonly used topically to sterilize wounds, or internally to fight infections, such as vaginitis and sore throat, and also to sanitize drinking water. Because iodine is antibacterial, drinking it may cause friendly bacterial flora to suffer and result in diarrhea and stomach cramps (the same applies to Lugol’s solution, but to a lesser extent as it contains iodides as well).

Ingestion of iodides prevents the incorporation of destructive radioactive iodine into the body (mainly by the thyroid) in case of nuclear accidents. It also may help flushing already incorporated radioactive iodine from the thyroid, although too much iodine inhibits secretion of T4/T3 from the gland.

Common-Sense Cautions

Overdosing any of the iodine supplements can lead to swollen salivary glands, metallic aftertaste and skin rash and itching (that are usually due to rapid process of detoxification from heavy metals fluorides and bromides), faster heartbeat or palpitations and diarrhea. When supplementation is stopped, these symptoms will usually disappear quickly, often within one day. Iodine stabilizes thyroid hormone production, so it is an adaptogen, but in rare cases, such as acquired allergy to iodine (Hashimoto’s disease), it may actually misbalance it. In some cases, iodine supplementation can cause hypothyroidism, so it’s important to get checked by your doctor to make sure that your thyroid function is not worsened by supplementation. Some authors advising caution are Alan Christianson (22), Jeffrey Dach, (23) and Alan Gaby (24). Testing of levels of thyroid hormones along with testing and supplementation of mineral nutrients such as selenium, zinc, copper, magnesium calcium, and other trace minerals may prevent problems in cases where high doses of iodine/iodide might tend to cause Hashimoto’s disease. (23)

Inorganic Iodine Availability

The most common form of iodine supplement is Lugol’s solution (17). The original solution contains 5% of iodine and 10% iodide. Solid pill forms of Lugol’s solution are sold under several brand names. Potassium iodide (KI), my favorite iodine supplement, is available as tablets as well. Various products with kelp or other seaweed extracts contain iodides as well. Check the label when you buy as some of them are very diluted.

It is difficult to find inexpensive elemental iodine (I2) solution in alcohol. You can buy iodine crystals online and make the proper solution by yourself very easily (using either alcohol or glycerol). The monoatomic iodine concept is simply a marketing gimmick that has been created to inflate the price several fold. Note that if the monoatomic claims were really true, few would really want to drink free radicals, the only monoatomic form that exists. Iodine free radicals are not transported freely in our bodies because they are too reactive. Elemental iodine preparations, including iodine dissolved in glycerol, may be helpful products for external antiseptic use rather than a supplement.

Another form of iodine supplement includes a mixture of algae and thyroid extract in glycerin, water and ethanol. This is likely not harmful because it contains T3 and T4 only in very small amounts, and the recommended serving size is also small. Other complex formulae that contain elemental iodine are a useful antiseptic, but not a good supplement. Iodine trichloride should be avoided as a supplement because it is too toxic.(19)

Summary

The established RDA allowance for iodine (150 mcg/day) is inadequate for many individuals. In order to maintain optimum health, adults need 2-5 mg of iodide daily. Actually, this is in line with the upper safe limit of dietary intake of iodine established by FAO (30 mcg/kg/day). In case of a dysfunctional thyroid or other illnesses, such as fibrocystic breast disease or cancer, 15-50 mg daily may be needed. Ask your doctor about the alternatives to hormone therapy or taking iodine-containing organic drugs, because inexpensive orthoiodosupplementation would usually not be his/her first choice.

The best and safest form of iodine supplementation for a healthy adult is iodide. Iodides are naturally produced in larger quantities by various seaweeds.

Please consult your doctor about iodine supplementation, as in your particular case it may be contraindicated.

References:

1. Abraham GE. The History of Iodine in Medicine Part III: Thyroid Fixation and Medical Iodophobia. http://optimox.com/pics/Iodine/IOD-16/PUB_16.htm

2. Dommisse J. MD Best Kept Secret (2009) http://www.westonaprice.org/modern-diseases/best-kept-secret/#sthash.vdrKPaJw.dpuf

3. http://theiodineproject.webs.com/addadhdautism.htm

4. Hamza RT1, Hewedi DH, Sallam MT. (2013) Iodine deficiency in Egyptian autistic children and their mothers: relation to disease severity. Arch Med Res. 44(7):555-61. http://www.ncbi.nlm.nih.gov/pubmed/24120386

5. http://www.fao.org/docrep/004/y2809e/y2809e0i.htm

6. Abraham GE. The Concept of Orthoiodosupplementation and Its Clinical Implications. https://www.optimox.com/pics/Iodine/IOD-06/IOD_06.htm

7. http://www.webmd.com/women/hashimotos-thyroiditis-symptoms-causes-treatments#1

8. Abraham GE. The History of Iodine in Medicine Part I: From Discovery to Essentiality. http://optimox.com/pics/Iodine/IOD-14/PUB_14.htm

9. Abraham GE. The historical background of the Iodine Project. http://www.optimox.com/pics/Iodine/IOD-08/IOD_08.htm

10. Abraham GE. The History of Iodine in Medicine Part II: The Search for and the Discovery of Thyroid Hormones. http://optimox.com/pics/Iodine/IOD-15/PUB_15.htm

11. Kelly FC. “Iodine in medicine and pharmacy since its discovery , 1811-1961.” Proc R Soc Med, 1961; 54:831-836. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1869599/

12. Abraham GE. “The safe and effective implementation of orthoiodosupplementation in medical practice.” The Original Internist, 2004; 11(1):17-36. http://www.hakalalabs.com/Research/Abraham_OI_Mar04.pdf

13. Fallon Morell S. The Great Iodine Debate (2009) The WestonA. Price Foundation, http://www.westonaprice.org/modern-diseases/the-great-iodine-debate/

14. Abraham GE. The Wolff-Chaikoff Effect: Crying Wolf? https://www.optimox.com/pics/Iodine/IOD-04/IOD_04.html

15. Brownstein D. The Cancer-Iodine Connection, (2015) http://www.newsmax.com/Health/Dr-Brownstein/iodine-cancer-cell-death-fish-oil/2015/06/10/id/649877/

16. 6-Iodolactone, key mediator of antitumoral properties of iodine, M. Nava-Villalba, C. Aceves, (2014) Prostaglandins & Other Lipid Mediators 112, 27-33. https://www.researchgate.net/publication/263856609_6-Iodolactone_key_mediator_of_antitumoral_properties_of_iodine

17. Bacteriological Analytical Manual, R40 Lugol’s Iodine Solution (2001), http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm062245.htm

18. Review of Atomidine, International Wellness Directory, http://www.mnwelldir.org/docs/reviews/atomidine.htm

19. Material safety data sheet, http://www.mnwelldir.org/docs/history/Iodine_Trichloride.pdf

20. Abraham GE. The historical background of the Iodine Project http://www.optimox.com/pics/Iodine/IOD-08/IOD_08.htm

21. Abraham GE and Brownstein D. A Rebuttal of Dr. Gaby’s Editorial on Iodine. (2005) Townsend Letter, The Examiner of Alternative Medicine, http://www.townsendletter.com/Oct2005/gabyrebuttal1005.htm

22. Christianson A. http://www.integrativehealthcare.com/why-i-discourage-high-dose-iodine/

23. Dach J. http://jeffreydachmd.com/iodine_is_safe

24. Gaby A. http://www.townsendletter.com/AugSept2005/gabyiodine0805.htm

Nutritional Medicine is Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Access the original OMNS article, “The Need for Iodine Supplementation”: http://www.orthomolecular.org/resources/omns/v13n14.shtml

OMNS free subscription: http://orthomolecular.org/subscribe.html

OMNS article archive: http://orthomolecular.org/resources/omns/index.shtml

0

RECENT ADVANCES IN LIPOSOME TECHNOLOGY

Dr. Hank Liers, PhD liposomes liposomal nutrientsHealth Products Distributors, Inc. recently decided to augment the variety of liposomal products we carry based upon the significant advancements of the technology during the last few years.

Among the benefits of using liposomes are that significantly higher levels of certain nutrients can be delivered directly to the cells where they are needed. In this article, I will discuss some of the recent scientific advances and new products associated with these advances.

Types of Liposomes

Figure 1 – liposomal types

SMALLER IS SIGNIFICANTLY BETTER

In December 2015, I wrote a blog article on liposomes to introduce the liposomal products we began selling at that time. Unfortunately, the particle size of these original products are on the order of 500 nanometers (nm), and as such are not nearly as well absorbed as the much smaller liposomes that have recently been developed by Quicksilver Scientific.

Figure 1 gives an overview of current liposome types. These include multi-lamellar vesicles (MLV) that range in size from 300–5,000 nm and have more than one bilayer.

Large unilamellar vesicles (LUV) range in size from 100–300 nm. They have a single bilayer and a high trapped volume, but have lower thermodynamic stability and decreased uptake.

Small unilamellar vesicles (SUV) range in size from 20–100 nm. SUV have a long circulation half-life and better cellular accumulation. Small lipid particles have the fastest uptake kinetics and can participate in paracellular (between cells) transport. The nutritional liposome industry is moving toward the use of SUV.

Small liposomes (SUV) are drastically more efficient at intracellular delivery of encapsulated compounds. In a recent study with carefully sized liposomes, cellular uptake increased nine-fold as liposome size was decreased from 236 nm to 97 nm and was 34 fold higher at 64 nm (see Figure 2). This figure shows flow cytometry results (a measure of cellular uptake) for Caco-2 cells incubated with liposomes containing Dil-C18 at 15 min and 60 min intervals.

Size effects of liposomes for cellular uptake

Figure 2 – Chart showing greatly enhanced absorption of liposomes as size decreases

 

HPDI CARRIES NEW LIPOSOMAL PRODUCTS

Our new liposomal product supplier currently is providing a wide range of products that have stable liposomes of about 50 nm. These products are bottled in such a way that they are taken by pumping (or squirting) the contents directly into your mouth (i.e., oral administration). This is an extremely clean method of dosing in which a few pumps of liposomal liquid can be rapidly taken or administered with no need for placing the product into separate glass of water or squeezing packets.

Because of the very small size much of the ingredients are absorbed through mucus membranes and into the system and cells extremely quickly (within seconds/minutes). In addition to the ingredients within the liposome, one gets significant amounts of phosphytidal choline into the cell membranes with a very beneficial effect on membrane function.

We are currently carrying the following Quicksilver Scientific liposomal products:

  1. Vitamin C with R-Lipoic Acid
  2. Glutathione
  3. Colorado Hemp Oil
  4. NanoMojo – a unique combination of 19 adaptogenic herbs

Quicksilver Liposomes

We highly encourage that you use the products because of the huge benefits they provide. We use them ourselves every day.

2

ALKALINIZE RAPIDLY USING pH ADJUST

Fred Liers PhD alkalinize rapidly using pH AdjustYou’ve heard it before. Eat more fruits and vegetables to be alkaline. Consume more alkaline-forming foods. Eat fewer acid-forming foods to avoid acidosis. Balance your pH levels.

Maybe you’ve even studied lists or charts of acid- and alkaline-forming foods to encourage dietary choices for creating proper acid-alkaline balance.

It’s no secret that acid-alkaline balance is important for health. In fact, it is well established that pH levels in the range of 7.35–7.45 provide many benefits. The facts are the facts, and the science is sound.

ph value foods acid alkaline ph adjust

Consuming more alkaline-forming fruits and vegetables can help maintain proper pH in the body.

Yet, if creating alkalinity were that simple, then why are most individual’s pH levels acidic instead of alkaline? What can be done to remedy the endemic (and epidemic!) levels of acidosis we see today?

Consuming potassium-rich fruits and vegetables remains the most important means for maintaining alkaline conditions in the body. However, taking pH Adjust powder supplement is an effective adjunct not only for helping balance pH levels, but rapidly producing an alkaline state conducive to optimal health.

pH BALANCE BASICS

A pH of 7 is considered neutral. A slightly alkaline pH level – like 7.4 – is best for health, of course.

Known benefits of ideal pH levels (slightly alkaline) include:

• Optimal function of enzymes
• Proper mineral retention, including electrolyte reserves
• Better tissue oxygenation
• Beneficial effects on microbiome

Dietary intake of alkaline-forming foods is the most obvious way of supporting proper pH. Consuming a diet rich in alkaline forming foods, such as fruits and vegetables (particularly leafy green vegetables) and vegetable juices are proven means for successfully balancing the effects of acid-forming foods like meats, and most grains and starches (simple carbohydrates).

Vegetables and fruits contain potassium. Evidence shows that potassium is critical for producing alkaline conditions in the body.

Known factors producing overly acidic conditions in the body include consuming meats, sugar, processed foods, and simple carbohydrates like wheat, corn, rice, and most pastas and breads.

pH BALANCE ESSENTIAL FOR HEALTH

Despite the certain knowledge that consuming vegetables, vegetable juices, and certain fruits helps balance pH, most people’s pH levels are overly acidic. I personally know many people, often vegetarians, whose pH levels are perfectly within the range suggested for optimal health.

Yet, I also see that most people do not consume sufficient alkaline-forming foods (specifically vegetables and vegetable juices), and therefore I am not surprised that the pH levels of most people are overly acidic.

What people in the thick of life may not realize is the degree to which acidosis—chronic or otherwise—is taking a toll of their health. And how maintaining alkalinity can improve health, longevity and quality of life. Or how easy it can be to create and sustain alkaline conditions using diet and dietary supplements.

MODERN TIMES: CHRONIC ACIDOSIS FOR MOST

Government statistics show that individuals by far do not consume recommended amounts of fruits and vegetables. It makes me wonder what foods the average individual or family consumes daily. Fast foods, fried foods, GMO foods, sugar-laden foods, and processed foods, as well as artificial additives, pesticides and agricultural chemicals are not conducive to alkaline conditions.

Neither are high-nitrogen foods, like red meats and most high-protein animal foods, especially when over-consumed—and not balanced by potassium-rich plant foods.

It seems the diet and lifestyle of most people are such that they are overly acidic. This may be considered a symptom of “modern” life. Yet, while the acid-alkaline balance of ancient diets—and even the diets of Westerners into the 20th century may have been fundamentally better (i.e., more alkaline-forming), the principles of pH balance remain the same. The pH levels of individuals subsisting on grains in any historical period would be relatively acidic.

Beyond low potassium intake from vegetables and fruits, other factors associated with over acidity include alcohol and most pharmaceuticals, antibiotics, artificial sweeteners, preservatives and artificial colorings, low nutrient intake, chemical exposure, pollution, lack of exercise, shallow breathing, and chronic stress.

Given the prevalence of these factors, is it any wonder that maintaining alkaline conditions in the body has become difficult for the average person?

Some effects of acidosis:

• Fatigue
• Being “out of breath” easily and asthmatic symptoms
• Muscle cramping or pain—even with little exertion
• Feeling like can’t get sufficient air (low tissue oxygenation)
• Skin problems
• Allergies
• Headaches
• Weight gain

Importantly, studies indicate that long-term acidosis is linked to certain health conditions, including arthritis, diabetes, fibromyalgia, heart disease, osteoporosis, stroke, and other adverse conditions.

HOW TO BE ALKALINE: DIET AND pH ADJUST

The answer for maintaining alkalinity is to consume plenty of potassium-rich fruits and vegetables. Most people know that it is important to eat 4–6 servings of vegetables daily. Yet, how many actually do? And why is that?

Not unlike taking daily multivitamins and sufficient quantities of basic dietary supplements, maintaining proper pH levels is easier said than done for most people. It just is.

For example, what if you normally consume sufficient amounts of fruits and vegetables, but you are traveling? Or find yourself on a given day not maintaining sufficient intake to maintain optimal pH balance? Or inadvertently become exposed to “factors” that create acidosis?

If you regularly consume sufficient levels of vegetables, vegetable juices, and certain fruits, you will most likely be slightly alkaline most of the time. If you do not, then you will either need to increase your intake of these potassium-rich foods, or try something else, or both.

How do I know this? Because despite my rather large intake of vegetables, vegetable juices, and fruits, I discovered that I am myself not always sufficiently alkaline. When I recently used litmus paper to test my pH levels, I found to my surprise that I am not *always* as alkaline as I should be.

Fortunately, my father Hank Liers, who is our company’s formulator and founder, had something brewing in his mind the last few years.

Just as I was deeply wondering how to squeeze more vegetable juices into my busy schedule…he develops a formula that forever changes my perspective on acid-alkaline balance, not to mention keeping me alkaline — like all the time.

It is amazing and it is “something else.” He calls it pH Adjust. And that is what it does—adjust your pH—and fast!

pH Adjust

pH ADJUST can safely and effective alkalinize the body.

WHAT TO EXPECT: pH ADJUST BENEFITS

After taking a single dose of pH Adjust, my pH “litmus” paper turned from light-ish green to deep purple.

After taking a dose every day for 10 days, my litmus test paper is dark blue to purple nearly all the time.

In addition, my father, Dr. Hank, has noticed that by taking a single large dose (a rounded teaspoon) every morning upon arising and measuring his urinary pH levels shortly before taking the dose, his morning pH levels are consistently in the 6.8 to 8.0 range. Before initiating this practice his morning urinary pH range was 6.2 to 6.6. Using this same protocol, my mother has experienced the same pattern of morning urinary pH values.

Of course, urinary (and salivary) pH measurements over the day will show significant variations depending upon your dietary habits. However, it was noticed that the trend was to have the pH increase over time as the protocol was rigorously followed.

What changed? Well, our pH levels have changed—toward alkalinity—for one thing. For another thing, I notice I have greater stamina, breathe easier, and just “feel” better.

Another unexpected benefit: my teeth feel stronger. Go figure! I thought about it and I see that my body must be retaining minerals better.

When the body is acidic, minerals are required to “buffer” the acidity. The body will even pull minerals from bones or teeth to buffer acidity because it tries to balance acidity any way it can.

Does this mean you can stop eating vegetables—and just take pH Adjust? Absolutely “no” because your diet remains the single most important factor in keeping your body slightly alkaline. If anything, your intake of potassium-rich fruits and vegetables (like kale and other leafy greens) should increase or at least be maintained, if it is already sufficiently abundant in these foods.

The arrival of pH Adjust just means there is a highly effective tool (supplement) to help maintain proper acid-alkaline balance beyond your diet alone. It means that whenever your pH levels dip into an acidic zone, you can rapidly and effectively return yourself to an alkaline state independently of your immediate dietary circumstances. From this perspective, pH Adjust is like an insurance policy: a useful means to attain alkalinity if and when diet alone is not enough. That’s why pH Adjust is a dietary “supplement.”

I cannot guarantee you will get the exact results I obtained. Your results will depend on your diet, level of acidity, and exposure to other factors known to determine pH levels. Nevertheless, the science behind the development of pH Adjust is based on the fact that certain key forms of minerals like potassium and sodium bicarbonate and magnesium carbonate create alkaline conditions in the body.

TELL ME MORE ABOUT pH ADJUST

pH Adjust is a fluffy, mild-tasting power formula you add to water, juice, or other liquid drinks in small amounts (about 1/4 teaspoon) that rapidly “adjusts” your pH levels toward alkaline.

pH Adjust contains potassium bicarbonate, magnesium carbonate, potassium glycinate, and sodium bicarbonate. A one gram serving (about a rounded ¼ tsp) contains about 300 mg of bicarbonate, 260 mg of carbonate, 142 mg of potassium, 105 mg of magnesium, 48 mg of sodium, and 100 mg of glycine.

Potassium, sodium, and magnesium are key minerals involved in many important functions in the body. When combined in bicarbonates (potassium & sodium), carbonates (magnesium), and glycinate (potassium) they help to adjust and balance pH levels essential to optimal body function.

You can read more in depth about pH Adjust on our product page.

pH ADJUST VERSUS SODIUM BICARBONATE (BAKING SODA)

For years, health professionals have advocated the use of baking soda (sodium bicarbonate) for its alkalinizing effects and the benefits associated with balanced pH levels.

Baking soda is cheap and effective, but consuming it has drawbacks. Its key flaw is sodium. Sodium bicarbonate provides relatively too much sodium (salt), and as such, its consumption must be monitored so as to avoid elevated sodium levels. Too high sodium levels create known risks for high blood pressure (hypertension) and cardiovascular health.

pH Adjust is formulated to avoid high sodium levels. One key to the formula is its 3:1 ratio of potassium to sodium. These are balanced amounts, as well as levels the body itself favors in terms of absorption and retention. Moreover, these levels maintain a balance known to be heart-healthy and that keep the formula low in sodium, when used as directed.

Most individuals already consume sufficient (or more than sufficient) sodium, and therefore require other minerals to balance that intake. pH Adjust not only contains low levels of sodium, but also provides minerals (potassium, magnesium) needed to balance sodium levels in the body.

ph Adjust

A refreshing glass of water with pH Adjust. Can alkalinizing get any simpler?

TASTE

Taste is another advantage of pH Adjust. Baking soda literally tastes “salty” because it is full of sodium. For a long while, I used baking soda to balance my pH levels toward greater alkalinity.

I stopped taking baking soda not only because my dietary intake of alkaline-forming foods is usually sufficient (relative to the average person), but also because I no longer could stomach the salty taste. I continue to “slug” down baking soda every now and then, but I have to suppress my overriding desire to spit it out—it’s simply too salty!

Imagine me now: happily drinking my pH Adjust in water every morning (and sometimes afternoon) which tastes good! I cannot actually say it tastes like a dessert because it is more like neutral to slightly sweet in taste (partly due to its glycine content). It goes down smoothly with no detectable “salty” taste.

EVERYTHING TO LOVE IN AN ALKALINIZING FORMULA

I would say pH Adjust has everything I would ask for in an alkalinizing, pH balancing formula. It alkalinizes me–FAST! It provides critical minerals required for health in balanced amounts, including potassium and magnesium in easily assimilated forms. It is low in sodium. It tastes good. What more can you ask for?

pH Adjust probably is the most sophisticated alkalinizing formula available. Certainly it is better than calcium- and chemical-laden antacids, which I would never take anyway. pH Adjust’s elegant design makes baking soda seem plain and salty by comparison not to mention highly imbalanced in terms of its mineral content.

TRY pH ADJUST AND MEASURE YOUR pH

No one can really know the effects of such an excellent pH balancing formula as pH Adjust without accurately measuring their pH levels. That is the reason HPDI offers Hydrion litmus paper, which is simply a litmus paper for measuring pH.

Whether you use Hydrion brand papers won’t make a difference. Any good-quality litmus paper should work just fine. Use a small, one- or two-inch strip of pH paper to quickly dip into a saliva or urine sample (i.e., to test salivary or urinary pH). Hint: urinary pH tends to be more accurate because saliva tends to be affected by foods. Test salivary pH well away from meals.

hydrion litmus paper ph Adjust

Order a container or two of pH Adjust, which we’ve purposefully kept low cost so both health professionals and individuals can make it a regular part of their pH balancing regimes. At $19.95 for retail customers (and less for HPDI resellers/wholesale customers), you will see that there is significant value for the price of pH Adjust.

As for serving size, one container provides 250 one-gram servings (about a rounded 1/4 teaspoon). Even if you were to take larger amounts (like I do), say up to one teaspoon daily, there would be nearly 63 servings per container. That’s enough for two full months of servings assuming daily usage.

NOTHING TO LOSE, JUST pH BALANCE TO GAIN

For every person I know whose pH levels lean toward acidic end of the spectrum, there is a container of pH Adjust waiting to be opened. Seriously though, if you’re not getting quite enough potassium-rich vegetables in your diet (or think you are but actually are not), then please consider pH Adjust your supplemental “friend-in-need.”

And if you (or your clients) suffer from long-term, chronic acidosis due to a potential variety of causes, then you have much more to gain. Stop the spiral of acidity from keeping you from attaining much better balanced pH levels—and thereby improved health—by trying our simple blend of minerals in bicarbonate, carbonate, and glycinate forms, called pH Adjust.

Then measure your pH using litmus paper—and see the difference for yourself. Litmus paper doesn’t lie, and it gives you a reliable indicator of the progress you’re making and your current pH status in real time.

After using pH Adjust and measuring your results with litmus paper, then decide for yourself. Is pH Adjust worth its name? Does it effectively help you balance your pH? We think your answer will be “yes.” We believe you will love pH Adjust as much as we love it.

Be alkaline!!

RESOURCES

pH ADJUST

PH ADJUST ALKALINIZING FORMULA – NEW PRODUCT! (Blog)

List of acid-forming and alkaline forming foods

Hydrion Litmus Paper

hydrion ph paper litmus ph adjust

0

NO DEATHS FROM NUTRITIONAL SUPPLEMENTS IN 2015

Fred Liers PhD Orthomolecular News Service No deaths from supplements vitaminsEvery year, HPDI publishes several articles from the Orthomolecular New Service (OMNS). This month we share a news release from OMNS about the fact in 2015 there were no deaths caused by nutritional supplements, including vitamins, minerals, amino acids, homeopathics, or herbs.

===

FOR IMMEDIATE RELEASE
Orthomolecular Medicine News Service, January 3, 2017

NO DEATHS FROM NUTRITIONAL SUPPLEMENTS, INCLUDING VITAMINS, MINERALS, AMINO ACIDS, HOMEOPATHICS, OR HERBS.
SAFETY CONFIRMED BY AMERICA’S LARGEST DATABASE.

by Andrew W. Saul, Editor

(OMNS, Jan 3, 2017) There were no deaths whatsoever from vitamins in the year 2015. The 33rd annual report from the American Association of Poison Control Centers shows zero deaths from multiple vitamins. And, there were no deaths whatsoever from vitamin A, niacin, pyridoxine (B-6) any other B-vitamin. There were no deaths from vitamin C, vitamin D, vitamin E, or from any vitamin at all.

no deaths supplements vitamins

Safe to consume: no deaths from nutritional supplements in 2015.

Not only are there no deaths from vitamins, there are also zero deaths from any supplement. The most recent (2015) information collected by the U.S. National Poison Data System, and published in the journal Clinical Toxicology (1), shows no deaths whatsoever from dietary supplements.

NO DEATHS FROM VITAMINS

Zero deaths from vitamins. Want to bet this will never be on the evening news? Well, have you seen it there? And why not?

After all, over half of the U.S. population takes daily nutritional supplements. If each of those people took only one single tablet daily, that makes some 170,000,000 individual doses per day, for a total of well over 60 billion doses annually. Since many persons take far more than just one single vitamin tablet, actual consumption is considerably higher, and the safety of vitamin supplements is all the more remarkable.

It was claimed that one person died from vitamin supplements in the year 2015, according to AAPCC’s interpretation of information collected by the U.S. National Poison Data System. That single alleged “death” was supposedly due to “Other B-Vitamins.” This was claimed back in 2012 as well, with no substantiation then, either. Indeed, the AAPCC report specifically indicates no deaths from niacin (B-3) or pyridoxine (B-6). That therefore leaves folic acid, thiamine (B-1), riboflavin (B-2), biotin, pantothenic acid, and cobalamin (B-12) as the remaining B-vitamins that could be implicated. However, the safety record of these vitamins is extraordinarily good; no fatalities have ever been confirmed for any of them.

Abram Hoffer, MD, PhD, repeatedly said: “No one dies from vitamins.” He was right when he said it and he is still right today. The Orthomolecular Medicine News Service invites submission of specific scientific evidence conclusively demonstrating death caused by a vitamin.

NO DEATHS FROM MINERALS

There were zero deaths from any dietary mineral supplement. This means there were no fatalities from calcium, magnesium, chromium, zinc, colloidal silver, selenium, iron, or multimineral supplements. Reported in the “Electrolyte and Mineral” category was a fatality from the medical use of “Sodium and sodium salts” and another fatality from non-supplemental iron, which was clearly and specifically excluded from the supplement category.

NO DEATHS FROM ANY OTHER NUTRITIONAL SUPPLEMENT

Additionally, there were zero deaths from any amino acid or herbal product. This means no deaths at all from blue cohosh, echinacea, ginkgo biloba, ginseng, kava kava, St. John’s wort, valerian, yohimbe, Asian medicines, ayurvedic medicines, or any other botanical. There were zero deaths from creatine, blue-green algae, glucosamine, chondroitin, or melatonin. There were zero deaths from any homeopathic remedy.

WHEN IN DOUBT, BLAME A SUPPLEMENT

There actually was one fatality alleged from some “Unknown Dietary Supplement or Homeopathic Agent.” This is hearsay at best, and scaremongering at worst. How can an accusation be based on the unknown? Claiming causation without even knowing what substance or ingredient to accuse is baseless.

TRUTH: NO MAN, WOMAN, OR CHILD DIED FROM ANY NUTRITIONAL SUPPLEMENT

If nutritional supplements are allegedly so “dangerous,” as the FDA, the news media, and even some physicians still claim, then where are the bodies? There aren’t any.

REFERENCES

Mowry JB, Spyker DA, Brooks DE et al. 2015 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 33rd Annual Report. Clinical Toxicology 2016, 54:10, 924-1109, http://dx.doi.org/10.1080/15563650.2016.1245421

Data for vitamins, minerals, herbs, amino acids, and other supplements are presented in Table 22-B.

The complete 187-page article is available for free download from https://aapcc.s3.amazonaws.com/pdfs/annual_reports/2015_AAPCC_NPDS_Annual_Report_33rd_PDF.pdfor download this and all previous AAPCC Annual Reports at http://www.aapcc.org/annual-reports/

Nutritional Medicine is Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Find a Doctor

To locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml

The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource.

Editorial Review Board:

Ian Brighthope, M.D. (Australia)
Ralph K. Campbell, M.D. (USA)
Carolyn Dean, M.D., N.D. (USA)
Damien Downing, M.D. (United Kingdom)
Michael Ellis, M.D. (Australia)
Martin P. Gallagher, M.D., D.C. (USA)
Michael J. Gonzalez, N.M.D., D.Sc., Ph.D. (Puerto Rico)
William B. Grant, Ph.D. (USA)
Tonya S. Heyman, M.D. (USA)
Suzanne Humphries, M.D. (USA)
Ron Hunninghake, M.D. (USA)
Michael Janson, M.D. (USA)
Robert E. Jenkins, D.C. (USA)
Bo H. Jonsson, M.D., Ph.D. (Sweden)
Jeffrey J. Kotulski, D.O. (USA)
Peter H. Lauda, M.D. (Austria)
Thomas Levy, M.D., J.D. (USA)
Stuart Lindsey, Pharm.D. (USA)
Victor A. Marcial-Vega, M.D. (Puerto Rico)
Dave McCarthy, M.D. (USA)
Joseph Mercola, D.O. (USA)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, M.D. (Finland)
W. Todd Penberthy, Ph.D. (USA)
Jeffrey A. Ruterbusch, D.O. (USA)
Gert E. Schuitemaker, Ph.D. (Netherlands)
Thomas L. Taxman, M.D. (USA)
Jagan Nathan Vamanan, M.D. (India)
Ken Walker, M.D. (Canada)
Atsuo Yanagisawa, M.D., Ph.D. (Japan)

Andrew W. Saul, Ph.D. (USA), Editor-In-Chief
Robert G. Smith, Ph.D. (USA), Assistant Editor
Helen Saul Case, M.S. (USA), Assistant Editor
Michael S. Stewart, B.Sc.C.S. (USA), Technology Editor
Jason M. Saul, JD (USA), Legal Consultant

Comments and media contact: drsaul@doctoryourself.com OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication.

To Subscribe to the Orthomolecular News Service (OMNS) free: http://www.orthomolecular.org/subscribe.html

OMNS Archive: http://orthomolecular.org/resources/omns/index.shtml