0

PRO-C ANTIOXIDANT FORMULA UPDATE + VIDEO

Dr. Hank Liers, PhD pro-c™ pro-c super antioxidant formulaFred Liers PhD pro-c antioxidant vitamin c nrf2 formulaLooking for an advanced antioxidant formula? Already using or recommending vitamin C? Curious about cellular Nrf2 activation? Look no further than PRO-C™.

PRO-C™ is among the most effective antioxidant formulas available. It is an HPDI foundational supplement that works most effectively when used with multivitamins, essential fats, and superfoods. However, it is also an excellent standalone formula that can rapidly provide the body with extremely high protection from free radicals.

We ourselves have taken PRO-C daily for many years with excellent results. Our personal experience together with detailed feedback from health professionals and end-users affirms the effectiveness of PRO-C as a super-antioxidant–vitamin C-Nrf2 activator formula.

PRO-C provides 500 mg of buffered vitamin C per capsule (buffered with calcium, magnesium, and zinc) along with grape extract (seed, skin, pulp) and green tea extract (95% polyphenols). In addition, we include a special combination of the “network antioxidants” l-glutathione (reduced), n-acetyl-l-cysteine (NAC), r-lipoic acid, and selenium. Vitamin B2 and Vitamin B6 in coenzyme forms support the enzymatic effectiveness of the “network antioxidants”. The formula works so well because this combination of ingredients leverages the antioxidant power of vitamin C, grape extract, green tea extract, and the other nutrients to act synergistically in order to maximize effectiveness.

FORMULATION HISTORY AND THE SCIENCE BEHIND PRO-C™

What you may not know is the history of the development PRO-C and the scientific knowledge on which Dr. Hank Liers based his formulation of it.

Dr. Hank formulated his first product in 1989. It was a potent antioxidant formula he called PYC-C™ (sounds like “pixie”). PYC-C consisted of a combination of buffered Vitamin C (including magnesium, calcium, and zinc ascorbates) and pycnogenols from pine bark.

Much of the scientific research data Dr. Hank collected during the development of PYC-C regarding oligomeric proanthocyanidins (OPC) he later incorporated into an article (currently published on this blog) titled “Review of Scientific Research on Oligomeric Proanthocyanidins (OPC)” (rev. 2017)

By 1997 Dr. Hank had gathered a great deal of new scientific information regarding green tea catechins and the nutrients termed “network antioxidants” by Dr. Lester Packer, director of Packer Lab at University of California, Berkeley. Beyond this information, Dr. Hank studied additional research regarding how various nutrients worked together synergistically. At that point, he was ready to formulate the new, improved PRO-C™ super antioxidant formula.

PRO-C combines the ingredients of PYC-C (now known as OPC-C™) and uses grape pulp, skin, and seed extract with green tea extract (with high polyphenols >95% and EpiGalloCatechinGalate (EGCG) >45%), n-acetyl-l-cysteine (NAC), reduced glutathione (GSH), R-lipoic acid, selenium, and coenzyme Vitamins B2 and B6.

PRO-C super antioxidant formula 180 cap 90 cap

HPDI launched PRO-C™ in late 1997. It rapidly became one of our best-selling products. Our customers raved about how effective it was for them if they felt like they were “coming down with something” (like a cold, flu, virus, infection, etc.). Greater skin elasticity greatly helped pregnant women avoid stretch marks and episiotomies. Today, we highly recommend its use together with our other Foundational Supplements to ensure optimal health and anti-aging effects.

THE PRO-C™ SUPER ANTIOXIDANT FORMULA

PRO-C™ super antioxidant formula is extremely synergistic, especially in so far as it increases the body’s ability to quench free radicals in its aqueous (i.e., water-based) compartments. Because antioxidants may become free radicals themselves after they have done their job, the body has developed an elaborate system for recovery of oxidized antioxidants.

 

Dr. Lester Packer was the primary researcher investigating the synergistic character of antioxidants. He made this statement in his interview with Dr. Richard Passwater after publication of Packer’s The Antioxidant Miracle (1999):

[The major theme of] The Antioxidant Miracle is that antioxidants work in a coordinated manner. They interact with one another, and this interaction, which we like to call the antioxidant network, is very important to the overall antioxidant defense that we possess. The key members of the antioxidant network are vitamin E and vitamin C, but there are other participants in this network. These are thiol antioxidants, antioxidants that contain sulfur groups in the body. Glutathione perhaps is the best known of these, but there are other sulfur-containing antioxidants that also are very important.”

Dr. Packer continues:

“This whole antioxidant network works like an orchestra depending on individuals who have, of course, different complements of antioxidants depending upon their nutritional regimens and the individuality of their own body metabolisms. The idea behind having a network of antioxidants is that if one antioxidant happens to be deficient the others can compensate and still keep the antioxidant defense system strong.”

The following diagram shows some of the relationships in the antioxidant network and how they support each other.

Lester Packer antioxidant network diagram Figure 1 – Dr. Packer’s Antioxidant Network

We see, for example, reduced glutathione (GSH) has the ability to reduce oxidized Vitamin C back to its unoxidized state. Vitamin C reduces oxidized Vitamin E back to its unoxidized state, and both reduces glutathione and spares it for other important functions, including detoxification and immune enhancement.

Many polyphenols (e.g., oligomeric proanthocyanidins (OPCs), anthocyanidins and catechins) found in red grape and green tea extracts spare Vitamin C and glutathione in the body, as well as operate as powerful antioxidants, anti-inflammatories, and connective tissue strengtheners.

grapes grape extract antioxidant

Grapes provide antioxidant nutrients such as polyphenols, OPCs, anthocyans, and resveratrol.

R-Lipoic Acid (see abstracts below) operates as an antioxidant both in its oxidized and reduced states, reduces the oxidized forms of both Vitamin E and Vitamin C, and and has been shown to enhance glutathione levels. Because several of these substances are able to protect Vitamin E contained in cell membranes, this combination also has a significant beneficial effect on the fat soluble antioxidant status of the body!

The nutrients in PRO-C have been carefully selected and balanced to provide optimal effects, especially as related to free radical protection, detoxification, immune system enhancement, connective tissue strengthening, and reduction of inflammation. PRO-C therefore provides outstanding nutritional support in a wide variety of conditions of poor health, as well as acts to support and maintain a state of health and well-being.

It the last several years the research results on Nrf2 activators have become well known and products developed that take advantage of these nutrients. For details see our blog article Natural Phytochemical Nrf2 Activators for Chemoprevention. Researchers have been studying specifically how enzyme-activating substances such as OPCs and anthocyans activate a transcription factor known as Nrf2 that causes the body to endogenously produce higher levels of a wide variety of protective enzymes including superoxide dismutase (SOD), catalase, and glutathione peroxidase.

Although we did not know about Nrf2 activators in 1997 when we formulated PRO-C, we have subsequently learned that four of the ingredients in the formula have powerful Nrf2 activity. These include grape seed extract, green tea extract, NAC, and r-lipoic acid. With this knowledge, we now understand that PRO-C provides both powerful external antioxidants (with extremely high ORAC5.0 values) that support redox cycles within the body, but also provides ingredients that allow the body to endogenously produce powerful protective enzymes for even greater free-radical protection and health.

PRO-C™ ANTIOXIDANT FORMULA INGREDIENTS

PRO-C contains buffered vitamin C (in the form of powdered calcium, magnesium, and zinc ascorbates), high-potency grape extract (from grape pulp, skins, and seeds), green tea extract (with>95% polyphenols and >45% EGCG), reduced glutathione, N-Acetyl-L-Cysteine (NAC), R-lipoic acid, coenzyme forms of vitamin B2 (R5P) and vitamin B6 (P5P), and selenium.

Below we will discuss each ingredient and show some of the research that confirms its effectiveness.

VITAMIN C

Vitamin C typically is called l-ascorbic acid or ascorbate and is an essential nutrient for humans and other animal species. The term “vitamin C” refers to a number of vitamins that have vitamin C activity in animals, including ascorbic acid and its salts (e.g., magnesium ascorbate, calcium ascorbate, sodium ascorbate, etc.), and some oxidized forms such as dehydroascorbate and semidehydroascorbate.

Vitamin C is known to perform many critical functions within the body involving detoxification, tissue building, immune enhancement, pain control, and controlling or killing pathogenic organisms. It is also known to be helpful for wound and bone healing, healthy skin and eyes, fighting infections, stress control, toxic exposure, and repairing damaged tissue of all types. For much more information on the many benefits of Vitamin C see our blog article Vitamin C – An Amazing Nutrient.

Below are two abstracts that show some of the beneficial effects of Vitamin C when used with other network antioxidants:

ABSTRACT 1:
Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration.
Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T, Vina J
In: Am J Physiol (1992 Nov) 263(5 Pt 2):R992-5

We have studied the effect of exhaustive concentric physical exercise on glutathione redox status and the possible relationship between blood glutathione oxidation and blood lactate and pyruvate levels. Levels of oxidized glutathione (GSSG) in blood increase after exhaustive concentric physical exercise in trained humans. GSSG levels were 72% higher immediately after exercise than at rest. They returned to normal values 1 h after exercise. Blood reduced glutathione (GSH) levels did not change significantly after the exercise. We have found a linear relationship between GSSG-to-GSH and lactate-to-pyruvate ratios in human blood before, during, and after exhaustive exercise. In rats, physical exercise also caused an increase in blood GSSG levels that were 200% higher after physical exercise than at rest. GSH levels did not change significantly. Thus, both in rats and humans, exhaustive physical exercise causes a change in glutathione redox status in blood. We have also found that antioxidant administration, i.e., oral vitamin C, N-acetyl-L- cysteine, or glutathione, is effective in preventing oxidation of the blood glutathione pool after physical exercise in rats.

ABSTRACT 2:
The effect of glutathione and vitamins A, C, and E on acute skin flap survival.

Hayden RE, Paniello RC, Yeung CS, Bello SL, Dawson SM
In: Laryngoscope (1987 Oct) 97(10):1176-9

Vitamins A, C, and E act as antioxidants and as free radical scavengers in biological systems. Glutathione is involved in several reactions in vitamin metabolism and also plays an important role in cell membrane protection against lipid peroxidation by free radicals. We sought to use these natural defense mechanisms against oxygen free radicals formed during reperfusion of ischemic skin flaps. An acute axial random skin flap model was utilized in the rat. Vitamins or glutathione were administered by oral gastric tube or intravenously in the perioperative period, and survival of the flap was measured at 1 week. Glutathione, beta-carotene, ascorbic acid and alpha-D- tocopherol showed mean flap survival of 84% to 89%, each of which was significantly improved over saline controls (67% p less than .0005). The mechanisms and biochemistry of these vitamins, and their interactions with other vitamins and with glutathione, are discussed, along with clinical implications of free radical scavenging and skin flap survival.

GRAPE EXTRACT

Grape extract (seeds, skin, pulp) contain highly bioavailable bioflavonoid complexes that in research studies have been shown to have powerful antioxidant capability. The Oligomeric Proanthocyanidins (OPCs) in grape seed extract are able to strengthen collagen fibers in aging or damaged connective tissue and can act as a preventative against connective tissue degradation.

Some research indicates that anthocyans, which are found in extracts of grape skin and stems (but not in grape seed extract), can reduce oxidized glutathione while at the same time become reduced themselves. In addition, extracts of grape skin and stems (but not those of grape seed extract) contain a material called trans-resveratrol that has been shown to have chemopreventive effects.

Below we have provided some of the abstracts that are included in our broad list of relevant abstracts for PRO-C.

ABSTRACT 3:
Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice.
Bagchi D, Garg A, Krohn RL, Bagchi M, Bagchi DJ, Balmoori J, Stohs SJ
In: Gen Pharmacol (1998 May) 30(5):771-6

1. The comparative protective abilities of a grape seed proanthocyanidin extract (GSPE) (25-100 mg/kg), vitamin C (100 mg/kg), vitamin E succinate (VES) (100 mg/kg) and beta-carotene (50 mg/kg) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lipid peroxidation and DNA fragmentation in the hepatic and brain tissues, as well as production of reactive oxygen species by peritoneal macrophages, were assessed. 2. Treatment of mice with GSPE (100 mg/kg), vitamin C, VES and beta-carotene decreased TPA-induced production of reactive oxygen species, as evidenced by decreases in the chemiluminescence response in peritoneal macrophages by approximately 70%, 18%, 47% and 16%, respectively, and cytochrome c reduction by approximately 65%, 15%, 37% and 19%, respectively, compared with controls. 3. GSPE, vitamin C, VES and beta-carotene decreased TPA-induced DNA fragmentation by approximately 47%, 10%, 30% and 11%, respectively, in the hepatic tissues, and 50%, 14%, 31% and 11%, respectively, in the brain tissues, at the doses that were used. Similar results were observed with respect to lipid peroxidation in hepatic mitochondria and microsomes and in brain homogenates. 4. GSPE exhibited a dose-dependent inhibition of TPA- induced lipid peroxidation and DNA fragmentation in liver and brain, as well as a dose-dependent inhibition of TPA-induced reactive oxygen species production in peritoneal macrophages. 5. GSPE and other antioxidants provided significant protection against TPA-induced oxidative damage, with GSPE providing better protection than did other antioxidants at the doses that were employed.

ABSTRACT 4:
Clinical and capillaroscopic evaluation of chronic uncomplicated venous insufficiency with procyanidins extracted from vitis vinifera
Costantini A, De Bernardi T, Gotti A
In: Minerva Cardioangiol (1999 Jan-Feb) 47(1-2):39-46

BACKGROUND: The pharmacological treatment of non-complicated chronic venous insufficiency is a current and well-debated topic. The introduction of new products with action on the venous system, improved knowledge on the physiopathology of venous insufficiency and the possibility provided by new analytical instruments, have given new impulse to the consolidation of the clinical value of phlebotonics in this indication. METHODS: In light of this, 24 patients with non-complicated chronic venous insufficiency were treated with oral administration of Oligomeric Proanthocyanidins (Pycnogenols-OPC) 100 mg/day. To evaluate the therapeutic efficacy of the treatment, an instrumental evaluation by optical probe capillaroscope was employed in addition to the traditional subjective clinical parameters: swelling, itching, heaviness and pain. The videocapillaroscope examination was performed at the lower third of the leg and the first toe. Edema in the capillaroscopic field, the number of observable capillaries and the capillary dilatation were the parameter chosen to evaluate the efficacy of treatment. All patients completed the study with no reports of adverse events during the period of observation. RESULTS: The results obtained show a positive clinical response (improved or absent symptoms) in over 80% of patients, with significant improvement of symptoms already evident after the first 10 days of treatment. The mechanism of action of the OPCs explains the rapid reduction of the swelling of the lower limbs and correlated with this are the other evaluable symptoms: heaviness and itching. Particularly striking results were observed for itching and pain which completely disappeared during the course of therapy in 80% and 53% of the patients respectively. Noteworthy is the good correlation between the clinical and instrumental data, with improvement in a total of 70% of patients. CONCLUSIONS: The results obtained in the course of this clinical experience, with evident improvement already during the first weeks of treatment, the absence of adverse events added to the benefit of a once-a-day administration, justify the use of OPC in the treatment of non-complicated chronic venous insufficiency.

ABSTRACT 5:
Polymeric procyanidin fraction from defatted grape seeds protects HepG2 cells against oxidative stress by inducing phase II enzymes via Nrf2 activation.
Younghwa Kim, Youngmin Choi, Hyeonmi Ham, Heon-Sang Jeong, Junsoo Lee
Kim, Y., Choi, Y., Ham, H. et al. Food Sci Biotechnol (2013) 22: 485. https://doi.org/10.1007/s10068-013-0105-x

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor that regulates antioxidant response element (ARE)-driven phase II detoxification enzymes. In this study, induction of phase II enzymes via Nrf2/ARE activation in the cytoprotective effect of crude polyphenol extract (CPE), oligomeric procyanidin fraction (OPF), and polymeric procyanidin fraction (PPF) from defatted grape seeds in HepG2 cells was evaluated. Among these treatments, the treatment with PPF significantly increased Nrf2 protein expression in the nuclear fraction. Treating the samples increased heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) protein expression in a dose-dependent manner, and PPF significantly increased the levels of phase II enzymes. Cellular generation of reactive oxygen species (ROS) were effectively reduced by PPF. These results suggest that pretreatment with PPF shows a cytoprotective effect by inhibiting ROS production and inducing HO-1 and NQO1 expression via Nrf2 activation in HepG2 cells.

GREEN TEA EXTRACT

Green tea extract is obtained from the unfermented leaves of Camellia sinensis for which numerous biological activities have been reported including: antimutagenic, antibacterial, hypocholesterolemic, antioxidant, and protective against tumorigenesis. Below we have selected a few of the many abstracts we have on file showing the benefit of green tea extract.

Green tea antioxidant polyphenols catechins

Green tea leaves are high in antioxidant polyphenols and catechins.

ABSTRACT 6:
Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention.
Khan SG, Katiyar SK, Agarwal R, Mukhtar H
In: Cancer Res (1992 Jul 15) 52(14):4050-2

Following the oral feeding of a polyphenolic fraction isolated from green tea (GTP) in drinking water, an increase in the activities of antioxidant and phase II enzymes in skin, small bowel, liver, and lung of female SKH-1 hairless mice was observed. GTP feeding (0.2%, w/v) to mice for 30 days significantly increased the activities of glutathione peroxidase, catalase, and quinone reductase in small bowel, liver, and lungs, and glutathione S-transferase in small bowel and liver. GTP feeding to mice also resulted in considerable enhancement of glutathione reductase activity in liver. In general, the increase in antioxidant and phase II enzyme activities was more pronounced in lung and small bowel as compared to liver and skin. The significance of these results can be implicated in relation to the cancer chemopreventive effects of GTP against the induction of tumors in various target organs.

ABSTRACT 7:
INHIBITORY EFFECT OF SIX GREEN TEA CATECHINS AND CAFFEINE ON THE GROWTH OF FOUR SELECTED HUMAN TUMOR CELL LINES.
In: Anticancer Drugs (1996 Jun) 7(4):461-8
Institutional address: Department of Pharmacology and Toxicology College of Pharmacy University of Arizona Tucson 85721 USA.

Green tea is an aqueous infusion of dried unfermented leaves of Camellia sinensis (family Theaceae) from which numerous biological activities have been reported including antimutagenic, antibacterial, hypocholesterolemic, antioxidant, antitumor and cancer preventive activities. From the aqueous-alcoholic extract of green tea leaves, six compounds (+)-gallocatechin (GC), (-)-epicatechin (EC), (-)- epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)- epigallocatechin gallate (EGCG) and caffeine, were isolated and purified. Together with (+)-catechin, these compounds were tested against each of four human tumor cells lines (MCF-7 breast carcinoma, HT-29 colon carcinoma, A-427 lung carcinoma and UACC-375 melanoma). The three most potent green tea components against all four tumor cell lines were EGCG, GC and EGC. EGCG was the most potent of the seven green tea components against three out of the four cell lines (i.e. MCF-7 breast cancer, HT-29 colon cancer and UACC-375 melanoma). On the basis of these extensive in vitro studies, it would be of considerable interest to evaluate all three of these components in comparative preclinical in vivo animal tumor model systems before final decisions are made concerning which of these potential chemopreventive drugs should be taken into broad clinical trials.

GLUTATHIONE AND N-ACETYL-L-CYSTEINE (NAC)

Glutathione and NAC (a major precursor of glutathione) both provide important protection against toxins and free radicals, and can strengthen the immune system. Glutathione is considered to be one of the most important protective substances in the human body with almost 60% of liver detoxification accounted for by this key substance. In addition, glutathione is one of the most potent anti-viral substances known.

Some research has indicated that glutathione may not be able to enter easily into certain types of cells, but NAC is able to enter these cells and be converted into glutathione once inside the cell. Thus, the combination of glutathione and NAC appear to be more potent than either alone.

Below we provide some of the key abstracts we have on file regarding NAC and glutathione.

ABSTRACT 8
GSH rescue by N-acetylcysteine.
Ruffmann R Wendel A
In: Klin Wochenschr (1991 Nov 15) 69(18):857-62

Reduced glutathione (GSH) is the main intracellular low molecular weight thiol. GSH acts as a nucleophilic scavenger and as an enzyme-catalyzed antioxidant in the event of electrophilic/oxidative tissue injury. Therefore, GSH has a major role as a protector of biological structures and functions. GSH depletion has been recognized as a hazardous condition during paracetamol intoxication. Conversely, GSH rescue, meaning recovery of the protective potential of GSH by early administration of N-acetylcysteine (NAC), has been found to be life-saving. Lack of GSH and electrophilic/oxidative injury have been identified among the causes of the adult respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and the acquired immunodeficiency syndrome (AIDS). Experimental and early clinical data (in ARDS) point to the role of NAC in the treatment of these conditions. Recently, orally given NAC has been shown to enhance the levels of GSH in the liver, in plasma, and notably in the bronchoalveolar lavage fluid. Rescue of GSH through NAC needs to be appreciated as an independent treatment modality for an array of different disease, all of which have one feature in common: pathogenetically relevant loss of GSH.

ABSTRACT 9
Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine.
Bridgeman MM Marsden M MacNee W Flenley DC Ryle AP
In: Thorax (1991 Jan) 46(1):39-42

N-acetylcysteine (600 mg/day) was given to patients by mouth for five days before bronchoscopy and bronchoalveolar lavage to determine whether N-acetylcysteine could increase the concentrations of the antioxidant reduced glutathione in plasma and bronchoalveolar lavage fluid. Bronchoalveolar lavage was performed 1-3 hours (group 2, n = 9) and 16-20 hours (group 3, n = 10) after the last dose of N-acetylcysteine and the values were compared with those in a control group receiving no N-acetylcysteine (group 1, n = 8). N-Acetylcysteine was not detected in plasma or lavage fluid. Plasma concentrations of cysteine, the main metabolite of N-acetylcysteine and a precursor of reduced glutathione, were greater in the groups receiving treatment (groups 2 and 3) than in group 1. Cysteine concentrations in lavage fluid were similar in the three groups. Concentrations of reduced glutathione were greater in both plasma and lavage fluid in group 2 than in group 1. These data suggest that N-acetylcysteine given by mouth is rapidly deacetylated to cysteine, with resulting increases in the concentrations of cysteine in plasma and of reduced glutathione in plasma and the airways, which thus temporarily increase the antioxidant capacity of the lung.

R-LIPOIC ACID / ALPHA-LIPOIC ACID

R-Lipoic Acid is normally made at low levels in the human body, where it functions primarily as an important metabolic nutrient in the conversion of pyruvic acid into acetyl coenzyme A. As such, it plays a crucial role in the metabolism of both fats and carbohydrates into energy. In addition, r-lipoic acid functions as an extremely powerful antioxidant capable of trapping many different types of free radicals in the body.

Because it is both water and fat soluble, lipoic acid is able to operate in a broader range of body tissues than most other antioxidants. Its small size allows lipoic acid to enter areas of the body not easily accessible to many other substances; this allows lipoic acid, for example, to enter the cell nucleus and prevent free-radical damage to DNA.

Because it is such a powerful antioxidant and can easily function as such in both a reduced and oxidized state, lipoic acid is able to protect other important antioxidants such as glutathione, Vitamin E, and Vitamin C. R-lipoic acid is also able to chelate heavy metals such as lead, cadmium, mercury, free iron, and free copper out of the body.

Below we provide relevant scientific abstracts from our database regarding R-Lipoic acid.

ABSTRACT 10:
Alpha-Lipoic acid as a biological antioxidant.
Packer L Witt EH Tritschler HJ
In: Free Radic Biol Med (1995 Aug) 19(2):227-50

alpha-Lipoic acid, which plays an essential role in mitochondrial dehydrogenase reactions, has recently gained considerable attention as an antioxidant. Lipoate, or its reduced form, dihydrolipoate, reacts with reactive oxygen species such as superoxide radicals, hydroxyl radicals, hypochlorous acid, peroxyl radicals, and singlet oxygen. It also protects membranes by interacting with vitamin C and glutathione, which may in turn recycle vitamin E. In addition to its antioxidant activities, dihydrolipoate may exert prooxidant actions through reduction of iron. alpha-Lipoic acid administration has been shown to be beneficial in a number of oxidative stress models such as ischemia-reperfusion injury, diabetes (both alpha-lipoic acid and dihydrolipoic acid exhibit hydrophobic binding to proteins such as albumin, which can prevent glycation reactions), cataract formation, HIV activation, neurodegeneration, and radiation injury. Furthermore, lipoate can function as a redox regulator of proteins such as myoglobin, prolactin, thioredoxin and NF-kappa B transcription factor. We review the properties of lipoate in terms of (1) reactions with reactive oxygen species; (2) interactions with other antioxidants; (3) beneficial effects in oxidative stress models or clinical conditions.

ABSTRACT 11:
Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity.
Zhang J, Zhou X, Wu W, Wang J, Xie H, Wu Z.
In: Environ Toxicol Pharmacol. 2017 Apr;51:30-37. doi: 10.1016/j.etap.2017.02.022. Epub 2017 Feb 27.

Alpha-lipoic acid (α-LA) is an important antioxidant that is capable of regenerating other antioxidants, such as glutathione (GSH). However, the underlying molecular mechanism by which α-LA regenerates GSH remains poorly understood. The current study aimed to investigate whether α-LA regenerates GSH by activation of Nrf2 to alleviate cadmium-induced cytotoxicity in HepG2 cells. In the present study, we found that cadmium induced cell death by depletion of GSH through inactivation of Nrf2. Addition of α-LA to cadmium-treated cells reactivated Nrf2 and regenerated GSH through elevating the Nrf2-downstream genes γ-glutamate-cysteine ligase (γ-GCL) and GR, both of which are key enzymes for GSH synthesis. However, blocking Nrf2 with brusatol in the cells co-treated with α-LA and cadmium reduced the mRNA and the protein levels of γ-GCL and GR, thus suppressed GSH regeneration by α-LA. Our results indicated that α-LA activated Nrf2 signaling pathway, which upregulated the transcription of the enzymes for GSH synthesis and therefore GSH contents to alleviate cadmium-induced cytotoxicity in HepG2 cells.

SELENIUM

Selenium has been shown by clinical research to be a key mineral in the body’s defenses against free radicals and has been shown to be a major factor in reducing the symptoms of HIV infections and in the prevention of tumors. Selenium is used in conjunction with glutathione to form the powerful enzyme glutathione peroxidase that is responsible for detoxification of peroxides formed during the process of aerobic metabolism in humans and other animals.

ABSTRACT 12
Serum selenium concentrations in rheumatoid arthritis.
In: Ann Rheum Dis (1991 Jun) 50(6):376-8

O’Dell JR, Lemley-Gillespie S, Palmer WR, Weaver AL, Moore GF, Klassen LW

Selenium is a trace element and an essential part of the enzyme glutathione peroxidase, which protects cells from oxidative damage. Selenium has been shown to have antiproliferative, anti-inflammatory, antiviral, and immune altering effects. Serum selenium concentrations in 101 patients with seropositive rheumatoid arthritis were found to be significantly lower than those in 29 normal, healthy controls (mean (SD) 148 (42) v 160 (25) micrograms/l) and also lower than those in eight patients with fibrositis (148 (42) v 166 (25) micrograms/l). It is speculated that serum selenium concentrations may modulate the effect of viral or other infections in subjects with the appropriate genetic background and in this way enhance the development or progression of rheumatoid arthritis.

ABSTRACT 13
Studies on selenium in top athletes.
Dragan I, Ploesteanu E, Cristea E, Mohora M, Dinu V, Troescu VS
In: Physiologie (1988 Oct-Dec) 25(4):187-90

The authors performed a controlled trial in 18 top athletes (9 weight lifters and 9 rowers, girls) in order to make evident some chronic and acute effects (antioxidant) of selenium. Nonprotein–SH (essential glutathione), lipid peroxides (MDA-malondialdehyde), glucose-6-phosphate dehydrogenases (G-6-PDH) and fructose-1,6- diphosphate aldolase in serum, have been recorded initially on basal conditions, after 3 weeks of treatment (100 micrograms/day selenium or placebo) and again after 3 weeks of treatment, also on basal conditions, when crossing over the groups (between a free interval of 10 days). In another trial we registered these parameters on basal conditions and after two hours of hard training accompanied by a per oral administration of 150 micrograms selenium (respectively placebo). The results show significant changes under selenium treatment of the peroxides, G-6-PDH and light changes, not significant of the nonprotein–SH, changes which could suggest an antioxidant effect of this element.

VITAMINS B2 and B6 IN COENZYME FORMS

Vitamin B2 as coenzyme riboflavin-5-phosphate is a key vitamin that supports the regeneration of glutathione (via glutathione reductase). Vitamin B6 as coenzyme pyridoxal-5-phosphate is a key vitamin that supports the ability of glutathione to combine with toxic substances (via glutathione transferase) in the process of eliminating them from the body. They are especially effective in their coenzyme forms which allows them to be directly utilized by the body starting in the intestinal tract.

MAGNESIUM, CALCIUM, AND ZINC

Magnesium, zinc, and calcium synergistically work with (and enhance the effects of) the other ingredients in PRO-C. Minerals are especially needed as active components of enzymes that drive metabolic activity. For example, magnesium is required in the functioning of more than 325 types of enzymes.

PRO-C™ SUPER ANTIOXIDANT FORMULA BENEFITS

HIGHLY EFFECTIVE VITAMIN C FORMULA PLUS ANTIOXIDANTS. A complete vitamin C formula, a powerful antioxidant Formula, and Nrf2 activator combined in a single advanced supplement!

POWERFUL, SYNERGISTIC FREE-RADICAL QUENCHING FORMULA. PRO-C™ components work together to quench free radicals in your body. Vitamin C enables grape seed extract to function more effectively, and conversely grape seed extract potentiates vitamin C. Green tea extract boosts ORAC (Oxygen Radical Absorbance Capacity) value.

PROVIDES SIGNIFICANT AMOUNTS OF POWERFUL NRF2 ACTIVATORS (from Grape Extract, Green Tea Extract, NAC, and R-Lipoic Acid) that stimulate the production of the body’s own protective antioxidants including superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase.

SUPERIOR, BUFFERED (NON-ACIDIC) FORM OF VITAMIN C. Mineral Ascorbates never acidify your body, keeping you pH balanced. Staying alkaline is an important element in maintaining a healthy body.

RAPID ASSIMILATION. Capsule form ensures rapid uptake and assimilation in the body. You may also empty capsule contents into water, food, or directly Into mouth, if desired. Good, mildly tart taste!

COMPOSITION OF PRO-C™ SUPER ANTIOXIDANT FORMULA

One (1) vegetarian capsule of PRO-C provides the following percentages of the Daily Value:

NUTRIENT AMOUNT % Daily Value
Vitamin C (from mineral ascorbates) 500 mg 833%
BioVin® Grape Extract 30 mg *
Green Tea Extract 30 mg *
Calcium (from calcium ascorbate) 23 mg 2.3%
Magnesium (from magnesium ascorbate) 23 mg 5.7%
L-Glutathione (reduced) 20 mg *
N-Acetyl-L-Cysteine (NAC) 15 mg *
R-Lipoic Acid 5 mg *
Zinc (from zinc ascorbate) 2 mg 13%
Vitamin B2 (from riboflavin-5′-phosphate) 1 mg 118%
Vitamin B6 (from pyridoxal-5′-phosphate) 1 mg 50%
Selenium (from l-selenomethionine) 10 mcg *

* No established Daily Value

DIRECTIONS: As a dietary supplement take 1–3 capsules or more daily in divided doses (i.e., spread out over the day), or as recommended by a health care professional. It initially may be useful to take up to 6 capsules per day in divided doses for one week. The contents of the capsule may be emptied into juice or food, as needed.

INGREDIENTS: PRO-C™ SUPER ANTIOXIDANT FORMULA contains only the highest-quality USP grade magnesium ascorbate, USP grade calcium ascorbate, BioVin® grape extract (greater than 75% polyphenols, 55% OPC, greater than 3.5% anthocyanidins from grape pulp, skins, and seeds, and a small amount of trans resveratrol), green tea extract (95% min. polyphenols and 45% min. EGCG), l-glutathione (reduced), USP grade n-acetyl-l-cysteine, USP grade zinc ascorbate, r-(+)-lipoic acid, riboflavin-5′-phosphate, pyridoxal-5′-phosphate, l-selenomethionine, the smallest amounts of microcrystalline cellulose and silica in a vegetarian capsule.

PRO-C™ does not contain wheat, rye, oats, corn antigen, barley, gluten, soy, egg, dairy, yeast, sugar, sulfates, phosphates (other than coenzyme forms), fats, chlorides, GMOs, wax, preservatives, colorings, or artificial flavorings.

Click here to order PRO-C™.

SOURCES & RESOURCES

BOOKS

The Antioxidant Miracle. Lester Packer, PhD, and Carol Coleman. New York: John Wiley and Sons, 1999.

How to Live Longer and Feel Better. Dr. Linus Pauling. Corvallis, OR: Oregon State University Press, 2006.

ARTICLES

Review of Scientific Research on Oligomeric Proanthocyanidins (OPC)” (rev. 2017) by Hank Liers, PhD

“Vitamin C – An Amazing Nutrient” by Hank Liers, PhD

PRO-C™ and Ultimate Protector™ – Comparison by Hank Liers, PhD

“Antioxidant Cocktail Update: Part 1: The Take Home Message is to Use Antioxidant Supplements”
(An interview of Dr. Lester Packer by Richard A. Passwater, PhD, Whole Foods Magazine 1999)

ABSTRACTS

PRO-C™ / Vitamin C Abstracts

Catechin Abstracts

N-Acetyl-L-Cysteine (NAC) Abstracts

Lipoic Acid Abstracts

WEBSITES

Orthomolecular.org
(Therapeutic Nutrition Based Upon Biochemical Individuality)

PRODUCTS

PRO-C™Super Antioxidant Formula

Ultimate Protector™Nrf2 Activator Formula

OPC-C™

HPDI Vitamin C Products

0

ULTIMATE PROTECTOR INGREDIENTS – WILD BILBERRY AND WILD BLUEBERRY

Dr. Hank Liers, PhD biography about us HPDI integratedhealth formulator founder CEO scientist physicist wild bilberry and wild blueberry

Ultimate Protector contains wild bilberry and wild blueberry, as well as components from 29 different fruits, vegetables, and herbs. Each of these ingredients contain substances that may be considered to be polyphenols, antioxidants, and Nrf2 activators. In this article I will explore the ingredients wild bilberry and wild blueberry, which are components of Anthocomplete™ and VitaBerry Plus® from Futureceuticals.

ANTHOCOMPLETE™

AnthoComplete™ (N669) is a specially designed blend of anthocyanins derived from wild bilberry and wild blueberry, acai, black currant extract, sweet cherry, raspberry, elderberry, blackberry, aronia, black soybean hull extract, and blue corn. Anthocyanins are powerful plant polyphenols associated with a variety of areas of human health, including healthy aging, healthy glucose metabolism, cardiovascular health, and inflammation management.

Carefully designed to maximize the amount of beneficial anthocyanins that can be available in a single source, AnthoComplete is a proprietary formula suitable for a wide-range of applications.

With its diverse blend, AnthoComplete contains a minimum level of 10% anthocyanins, 3,000 ORAC μmole TE/g (typical), and 15% total phenolics (typical).

Bilberry / Blueberry wild bilberry and wild bluebery

VITABERRY PLUS®

VitaBerry® (N1023) is the trade name for a line of high ORAC blends of fruit powders and fruit extracts, exclusively available through FutureCeuticals.

VitaBerry® is a proprietary formula that combines wild bilberry and wild blueberry, cranberry, raspberry, strawberry, prune, cherry, and grape whole powders and extracts into lines of custom blends. High in fruit polyphenols, anthocyanins, proanthocyanins, ellagic acid, chlorogenic acid, resveratrol, and quinic acid, VitaBerry offers 6,000 ORAC units in a single gram.

VitaBerry® Plus (N81.3) combines the standard blend of VitaBerry® with resveratrol and quercetin to deliver a minimum of 12,000 ORAC units per gram.

HEALTH BENEFITS OF WILD BILBERRY AND WILD BLUEBERRY

Bilberry is any of several Eurasian  species of low-growing shrubs in the genus Vaccinium, bearing edible, nearly black berries. The species most often referred to is Vaccinium myrtillus L., but there are several other closely related species. Bilberries are distinct from blueberries but closely related. Whereas the bilberry is native to Europe, the blueberry is native to North America.

The bilberry fruit is smaller than that of the blueberry, but with a fuller taste. Bilberries are darker in color, and usually appear near black with a slight shade of purple. While blueberry fruit pulp is light green in color, bilberry is red or purple, heavily staining the fingers, lips, and tongue of consumers eating the raw fruit. The color comes from diverse anthocyanins.

So-called wild (lowbush) blueberries, smaller than cultivated highbush ones, are prized for their intense color. “Wild” has been adopted as a marketing term for harvests of managed native stands of lowbush blueberries. The bushes are not planted or genetically manipulated, but they are pruned or burned every two years, and pests are “managed”. The content of polyphenols and anthocyanins in lowbush (wild) blueberries (V. angustifolium) exceeds values found in highbush cultivars.

wild bilberry and wild blueberry

Wild bilberry and wild blueberry (above) provide Nrf2 activators.

The key compounds in bilberry fruit are called anthocyanins and anthocyanosides. These compounds help build strong blood vessels and improve circulation to all areas of the body. They also prevent blood platelets from clumping together (helping to reduce the risk of blood clots), and they have antioxidant properties (preventing or reducing damage to cells from free radicals). Anthocyanins boost the production of rhodopsin, a pigment that improves night vision and helps the eye adapt to light changes.

Bilberry fruit is also rich in tannins, a substance that acts as an astringent. The tannins have anti-inflammatory properties and may help control diarrhea.

Bilberries have been shown to have the highest Oxygen Radical Absorbance Capacity (ORAC) rating of more than 20 fresh fruits and berries. The antioxidant properties of bilberries were shown to be even stronger than those of cranberries, raspberries, strawberries, plums, or cultivated blueberries.

The antioxidant powers and health benefits of bilberries and blueberries can be attributed to a number of remarkable compounds contained in them, including the following:

  • Anthocyanins
    • malvidins
    • delphinidins
    • pelargonidins
    • cyanidins
    • peonidins
  • Hydroxycinnamic acids
    • caffeic acids
    • ferulic acids
    • coumaric acids
  • Hydroxybenzoic acids
    • gallic acids
    • procatchuic acids
  • Flavonols
    • kaempferol
    • quercetin
    • myricetin
  • Other phenol-related phytonutrients
    • pterostilbene
    • resveratrol
  • Other nutrients
    • lutein
    • zeaxanthin
    • Vitamin K
    • Vitamin C
    • manganese

Scientific Studies on the Antioxidant Effects of Wild Bilberry and Wild Blueberry

Databases of scientific studies (like the National Institutes of Health (NIH) PubMed database) contain thousands of up-to-date studies and abstracts about various Vaccinium species, including wild bilberry and wild blueberry (V. myrtillis and V. angustfolium, respectively).

We provide a few relevant scientific studies on the antioxidant effects of wild bilberry and wild blueberry.

In vitro anticancer activity of fruit extracts from Vaccinium species.

From: http://www.ncbi.nlm.nih.gov/pubmed/8693031

Abstract

Fruit extracts of four Vaccinium species (lowbush blueberry, bilberry, cranberry, and lingonberry) were screened for anticarcinogenic compounds by a combination of fractionation and in vitro testing of their ability to induce the Phase II xenobiotic detoxification enzyme quinone reductase (QR) and to inhibit the induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, by the tumor promoter phorbol 12-myristate 13-acetate (TPA). The crude extracts, anthocyanin and proanthocyanidin fractions were not highly active in QR induction whereas the ethyl acetate extracts were active QR inducers. The concentrations required to double QR activity (designated CDqr) for the ethyl acetate extracts of lowbush blueberry, cranberry, lingonberry, and bilberry were 4.2, 3.7, 1.3, and 1.0 microgram tannic acid equivalents (TAE), respectively, Further fractionation of the bilberry ethyl acetate extract revealed that the majority of inducer potency was contained in a hexane/chloroform subfraction (CDqr = 0.07 microgram TAE). In contrast to their effects on QR, crude extracts of lowbush blueberry, cranberry, and lingonberry were active inhibitors of ODC activity. The concentrations of these crude extracts needed to inhibit ODC activity by 50% (designated IC50) were 8.0, 7.0, and 9.0 micrograms TAE, respectively. The greatest activity in these extracts appeared to be contained in the polymeric proanthocyanidin fractions of the lowbush blueberry, cranberry, and lingonberry fruits (IC50 = 3.0, 6.0, and 5.0 micrograms TAE, respectively). The anthocyanidin and ethyl acetate extracts of the four Vaccinium species were either inactive or relatively weak inhibitors of ODC activity. Thus, components of the hexane/chloroform fraction of bilberry and of the proanthocyanidin fraction of lowbush blueberry, cranberry, and lingonberry exhibit potential anticarcinogenic activity as evaluated by in vitro screening tests.

 

Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells.

From: http://www.ncbi.nlm.nih.gov/pubmed/17460300

Abstract

PURPOSE: To determine whether anthocyanin-enriched bilberry extracts modulate pre- or posttranslational levels of oxidative stress defense enzymes heme-oxygenase (HO)-1 and glutathione S-transferase-pi (GST-pi) in cultured human retinal pigment epithelial (RPE) cells.

METHODS: Confluent ARPE-19 cells were preincubated with anthocyanin and nonanthocyanin phenolic fractions of a 25% enriched extract of bilberry (10(-6)-1.0 mg/mL) and, after phenolic removal, cells were oxidatively challenged with H(2)O(2). The concentration of intracellular glutathione was measured by HPLC and free radical production determined by the dichlorofluorescin diacetate assay. HO-1 and GST-pi protein and mRNA levels were determined by Western blot and RT-PCR, respectively.

RESULTS: Preincubation with bilberry extract ameliorated the intracellular increase of H(2)O(2)-induced free radicals in RPE, though H(2)O(2) cytotoxicity was not affected. By 4 hours, the extract had upregulated HO-1 and GST-pi protein by 2.8- and 2.5-fold, respectively, and mRNA by 5.5- and 7.1-fold, respectively, in a dose-dependent manner. Anthocyanin and nonanthocyanin phenolic fractions contributed similarly to mRNA upregulation.

CONCLUSIONS: Anthocyanins and other phenolics from bilberry upregulate the oxidative stress defense enzymes HO-1 and GST-pi in RPE, suggesting that they stimulate signal transduction pathways influencing genes controlled by the antioxidant response element.

 

Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism.

From: http://www.ncbi.nlm.nih.gov/pubmed/24565673

Abstract

The objectives of this study were to compare the anti-inflammatory effects of anthocyanins from blueberry (BBA), blackberry (BKA), and blackcurrant (BCA) and to determine the relationship between their antioxidant capacity and anti-inflammatory effect in macrophages. Major anthocyanins in BBA, BKA and BCA were malvidin-3-glucoside (16%), cyanidin-3-glucoside (98%) and delphinidin-3-rutinoside (44%), respectively. BKA showed higher total antioxidant capacity than BBA and BCA. RAW 264.7 macrophages were incubated with 0-20 μg/ml of BBA, BKA and BCA, and subsequently activated by lipopolysaccharide (LPS) to measure proinflammatory cytokine production. Interleukin 1β (IL-1β) messenger RNA (mRNA) levels were significantly decreased by all berry anthocyanins at 10 μg/ml or higher. Tumor necrosis factor α (TNFα) mRNA levels and secretion were also significantly decreased in LPS-treated macrophages. The levels of the repression were comparable for all berry anthocyanins. LPS-induced nuclear factor κB (NF-κB) p65 translocation to the nucleus was markedly attenuated by all of the berry anthocyanins. In bone marrow-derived macrophages (BMMs) from nuclear factor E2-related factor 2 wild-type (Nrf2(+/+)) mice, BBA, BKA and BCA significantly decreased cellular reactive oxygen species (ROS) levels with a concomitant decrease in IL-1β mRNA levels upon LPS stimulation. However, in the BMM from Nrf2(-/-) mice, the anthocyanin fractions were able to significantly decrease IL-1β mRNA despite the fact that ROS levels were not significantly affected. In conclusion, BBA, BKA and BCA exert their anti-inflammatory effects in macrophages, at least in part, by inhibiting nuclear translocation of NF-κB independent of the NRF2-mediated pathways.

 

Purified Anthocyanins from Bilberry and Black Currant Attenuate Hepatic Mitochondrial Dysfunction and Steatohepatitis in Mice with Methionine and Choline Deficiency

From: http://pubs.acs.org/doi/abs/10.1021/jf504926n

Abstract

The berries of bilberry and black currant are rich source of anthocyanins, which are thought to have favorable effects on non-alcoholic steatohepatitis (NASH). This study was designed to examine whether purified anthocyanins from bilberry and black currant are able to limit the disorders related to NASH induced by a methionine-choline-deficient (MCD) diet in mice. The results showed that treatment with anthocyanins not only alleviated inflammation, oxidative stress, steatosis and even fibrosis, but also improved the depletion of mitochondrial content and damage of mitochondrial biogenesis and electron transfer chain developed concomitantly in the liver of mice fed the MCD diet. Furthermore, anthocyanins treatment promoted activation of AMP-activated protein kinase (AMPK) and expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α). These data provide evidence that anthocyanins possess significant protective effects against NASH and mitochondrial defects in response to a MCD diet, with mechanism maybe through affecting the AMPK/PGC-1α signaling pathways.

 

Effect of blueberry on hepatic and immunological functions in mice.

From: http://www.ncbi.nlm.nih.gov/pubmed/20382588

Abstract

Background: Conventional drugs used in the treatment and prevention of liver diseases often have side effects, therefore research into natural substances are of significance. This study examined the effects of blueberry on liver protection and cellular immune functions.

METHODS: To determine the effects of blueberry on liver protective function, male mice were orally administered blueberry (0.6 g/10 g) or normal saline for 21 days. Hepatic RNA was extracted by Trizol reagent, and the expression of Nrf2, HO-1, and Nqo1 was determined by real-time RT-PCR. Superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenate were determined, and liver index was measured. To assess the effects of blueberry on cellular immune function, male mice received blueberry (0.4, 0.6, or 0.8 g/10 g) for 35 days, and the percentages of CD3+, CD4+, and CD8+ T lymphocyte subgroups in peripheral blood were detected by flow cytometry, the index of the thymus and spleen was measured, and lymphocyte proliferation in the spleen was determined by MTT assay.

RESULTS: Blueberry treatment significantly increased the expression of Nrf2, HO-1, and Nqo1, the important antioxidant components in the liver. Hepatic SOD in the blueberry group was higher and MDA was lower than that in the control group (P<0.05). Blueberry also increased the index of the spleen and enhanced the proliferation of lymphocytes of the spleen (P<0.05). The percentages of the CD3+ and CD4+ T lymphocyte subsets and the CD4+/CD8+ ratio were also increased by blueberry (P<0.05).

CONCLUSIONS: Blueberry induces expression of Nrf2, HO-1, and Nqo1, which can protect hepatocytes from oxidative stress. In addition, blueberry can modulate T-cell function in mice.

 

Anthocyanins: Janus Nutraceuticals Displaying Chemotherapeutic and Neuroprotective Properties

From: http://link.springer.com/chapter/10.1007/978-94-007-4575-9_21

Abstract

Anthocyanins are natural polyphenolic compounds widely distributed as pigments in many fruits and vegetables. In addition to displaying antioxidant properties, these nutraceuticals exhibit anti-inflammatory, anti-proliferative, and pro-apoptotic activities suggesting their potential as novel chemotherapeutic agents. Through cell cycle down-regulation, and context-specific pro-oxidant activity, anthocyanins induce cytotoxicity in cancer cells in vitro and in vivo. Specifically, via regulation of the Bcl-2 protein family and induction of caspase-dependent or caspase-independent apoptotic pathways, anthocyanins inhibit the growth of cancers by inducing cell death. Moreover, by modulating the activities of specific kinases and proteases, including (but not limited to) cyclin-dependent kinases, mitogen-activated protein kinases, matrix metalloproteases, and urokinase-type plasminogen activators, anthocyanins induce apoptosis, inhibit motility, and suppress invasion of cancer cells. In marked contrast to their effects in cancer cells, we have found that anthocyanins display significant anti-apoptotic activity in neurons. Antioxidant properties of these nutraceuticals, particularly at the level of the mitochondria, appear to underlie their neuroprotective effects. The opposing effects of anthocyanins on cancer cells and neurons suggest that these nutraceuticals are promising candidates for development as either chemotherapeutic agents or novel neuroprotective compounds for the treatment of cancers or neurodegenerative diseases, respectively.

Recent Research on Polyphenolics in Vision and Eye Health

From: http://pubs.acs.org/doi/abs/10.1021/jf903038r#end-1

Abstract

A long-standing yet controversial bioactivity attributed to polyphenols is their beneficial effects in vision. Although anecdotal case reports and in vitro research studies provide evidence for the visual benefits of anthocyanin-rich berries, rigorous clinical evidence of their benefits is still lacking. Recent in vitro studies demonstrate that anthocyanins and other flavonoids interact directly with rhodopsin and modulate visual pigment function. Additional in vitro studies show flavonoids protect a variety of retinal cell types from oxidative stress-induced cell death, a neuroprotective property of significance because the retina has the highest metabolic rate of any tissue and is particularly vulnerable to oxidative injury. However, more information is needed on the bioactivity of in vivo conjugates and the accumulation of flavonoids in ocular tissues. The direct and indirect costs of age-related vision impairment provide a powerful incentive to explore the potential for improved vision health through the intake of dietary polyphenolics.

 

Bilberry Extracts Induce Gene Expression Through the Electrophile Response Element

From: http://www.tandfonline.com/doi/abs/10.1207/s15327914nc5401_11#.VLK6LVqBO24

Abstract

A number of genes important for detoxification and antioxidant defense induced by mild stress generated by, for example, physical activity/exercise, caloric restriction, or alcohol may provide health benefits by causing the organism to mount such a defense response. More recently, induction of these defenses has also been attributed to phytochemicals or secondary metabolites from dietary plants. Many polyphenols, which constitute a large fraction of these phytochemicals, increase cellular levels of antioxidants, such as glutathione and other components of the detoxification systems, via the transactivation of genes containing electrophile response elements (EpREs) within their promoters. One such gene, γ-glutamylcysteine synthetase, has previously been shown to be positively regulated by quercetin, a flavonoid found in high concentrations in onions, apples, and bilberries through EpRE transactivation. As a further step, we have investigated whether bilberries and quercetin have the ability to induce transcription of Fos-related antigen 1 (Fra-1), which contains two EpREs in its promoter. Fra-1 is a member of the activator protein 1 (AP-1) family of transcription factors and, due to the lack of transactivation domain Fra-1, can suppress activation of AP-1. We present results demonstrating that extracts from bilberries, and the flavonoid quercetin, abundant in bilberries, induce the fra-1 promoter and the cellular content of Fra-1 mRNA. We further provide evidence that this induction is mediated through EpREs.

 

Bilberry (Vaccinium myrtillus)

From: http://www.sigmaaldrich.com/life-science/nutrition-research/learning-center/plant-profiler/vaccinium-myrtillus.html

Synonyms / Common Names / Related Terms
Airelle, anthocyanins, Bickbeere (German), bilberry leaf, black whortle, Blaubeere (Dutch), blaubessen, bleaberry, blueberry, blueberry leaf, bogberry, bog bilberry, burren myrtle, cranberry, dwarf bilberry, dyeberry, Ericaceae (family), European blueberry, Heidelbeere (Dutch), Heidelbeereblatter, heidelberry, huckleberry, hurtleberry, lingonberry, lowbush blueberry, Mirtillo nero (Italian), Myrtilli folium, Myrtilli fructus, Myrtilus niger Gilib., Optiberry, resveratrol, sambubiosides, trackleberry, Vaccinium angulosum Dulac, Vaccinium montanum Salibs., Vaccinium myrtillus anthocyanoside extract, VMA extract, VME, whortleberry, wineberry
Mechanism of Action

Pharmacology:

  • Constituents: Bilberry contains several compounds that have demonstrated biological activity. The main chemicals contained in bilberry extract have been shown to be: anthocyanins30,31, flavonoids, hydroquinone, oleanolic acid, neomyrtillin, sodium, tannins, and ursolic acid17,20,32,33,34. Bilberry also contains resveratrol.28,29 The anthocyanosides, tannins, and flavonoids have been of particular scientific interest. Flavonoids have been shown in vitro to possess a number of biological properties, including inhibition of prostacyclin synthesis, reduction of capillary permeability and fragility, free radical scavenging, inhibition of a wide range of enzymes, impairment of coagulation and platelet aggregation, and anticarcinogenicity.33,5
  • Mechanism of action: Anthocyanins and other phenolics from bilberry upregulate the oxidative stress defense enzymes heme-oxygenase-1 and glutathione S-transferase-pin cultured human retinal pigment epithelial cells, suggesting that they stimulate signal transduction pathways, influencing genes controlled by the antioxidant response element.30
  • Antibacterial effects: In an in vitro study using Staphylococcus aureus, Staphylococcus aureus Oxford, Enterococcus faecalisBacillus subtilis, and Escherichia coli, an aqueous extract of bilberry leaves had a MIC of 12.7-17.8mg/mL and an aqueous extract of bilberry fruit had a MIC of 15.4-30.7mg/mL.24
  • Anticarcinogenic effects: In an in vitro study, anthocyanin-rich extracts from bilberry (Vaccinium myrtillus L.) inhibited the growth of a colon cancer cell line.6
  • Bomser et al. screened fruit extracts of bilberry for potential anticarcinogenic compounds by a combination of fractionation and in vitro testing of their ability to induce the Phase 2 xenobiotic detoxification enzyme quinone reductase (QR) and to inhibit the induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, by the tumor promoter phorbol 12-myristate 13-acetate (TPA).5 The crude extracts, anthocyanin, and proanthocyanidin fractions were not found to be highly active in Phase 2 xenobiotic detoxification enzyme quinone reductase (QR) induction, whereas the ethyl acetate extracts were active QR inducers. The concentrations required to double QR activity (designated CDqr) for the ethyl acetate extracts of bilberry were 1.0mcg tannic acid equivalents (TAE). Further fractionation of the bilberry ethyl acetate extract revealed that the majority of inducer potency was contained in a hexane/chloroform subfraction (CDqr = 0.07mcg TAE). The anthocyanidin and ethyl acetate extracts of bilberry were either inactive or relatively weak inhibitors of ornithine decarboxylase (ODC) activity. The authors concluded that components of the hexane/chloroform fraction of bilberry exhibit potential anticarcinogenic activity, as evaluated by in vitro screening tests.
  • Antihyperglycemic effects: In normal and depancreatized dogs, oral administration of bilberry leaves reduced hyperglycemia, even when the glucose was injected intravenously concurrently.15,16
  • Antioxidant effects: Bilberry contains anthocyanosides that are flavonoid derivatives of anthocyanins (the blue, red, or violet pigments found in many berry varieties), which are closely related in structure and activity to flavonoids17 and possess free radical scavenging/antioxidant properties. Antioxidant properties have been attributed to bilberry based on in vitro studies.1,2,34
  • Antiplatelet activity: In a clinical study of 30 subjects with normal platelet aggregation, 480mg of Myrtocyan® (Vaccinium myrtillus anthocyanins) daily, 3g of ascorbic acid daily, or both treatments all reduced platelet aggregation after 30 and 60 days.11 Bilberry anthocyanins reduced platelet aggregation more than ascorbic acid alone, but bilberry anthocyanins and ascorbic acid together were the most effective. Also, in in vitro studies, anthocyanins extracted from bilberry have inhibited platelet aggregation.13,14,10,12
  • Flavonoids have been shown in vitro to inhibit prostacyclin synthesis. In one animal model, Vaccinium myrtillus anthocyanosides were studied for their effects on prostacyclin-like activity in rat arterial issue.7
  • Antiproliferative effects: According to one laboratory study, anthocyanins were the predominant phenolic compounds in bilberry extracts.31 Compared to other plants with anthocyanins, such as black currant or lingonberry, cell growth inhibition was greater for bilberry than other plants studied. The pro-apoptosis marker, Bax, was increased 1.3-fold in bilberry-treated cells, whereas the pro-survival marker, Bcl-2, was detected only in control cells. The results demonstrated that bilberry and other berry extracts containing anthocyanins inhibited cancer cell proliferation, mainly via the p21WAF1 pathway.
  • Antiulcer effects: In an animal study, large doses of cyanidin chloride from bilberry significantly increased gastric mucosal release of prostaglandin E2.19 In animal models of gastric ulcers, cyanidin chloride showed antiulcer activity.26,8
  • Astringent effects: Bilberry contains tannins that have been used medicinally as astringents and to treat diarrhea.
  • Connective tissue stabilizing effects: An in vitro study has suggested that anthocyanosides appear to stabilize connective tissue by enhancing collagen synthesis, inhibiting collagen degradation, and enhancing collagen cross linking.35 In contrast, Boniface et al. found a significant decrease in connective tissue synthesis (collagen and glycoproteins) in gingival tissue samples of 12 adult diabetics treated with 600mg of anthocyanosides daily for two months.36
  • Hepatoprotective activity: In an animal study, anthocyans exerted a protective effect on liver cells.27
  • Hyperglycemic effects: In an oral glucose tolerance test in healthy rats, an alcoholic extract of Vaccinium myrtillus leaves increased serum glucose levels compared to controls.25
  • Hypotensive effects: Bilberry has been theorized to potentially drop blood pressure, based on pre-clinical evidence of vascular smooth muscle-relaxing properties.21,22,23
  • Anthocyanoside extracts have been shown to have smooth muscle-relaxing activity, which may account for their purported effects in one series of women with dysmenorrhea.18 Bioflavonoids and extracts of anthocyanosides (such as those present in bilberry) have been shown to relax vascular smooth muscles in experimental models, possibly via stimulation of prostaglandins.21,22,23
  • Intracellular signaling effects: Anthocyanosides have been shown to inhibit cAMP phosphodiesterase, which is involved in intracellular signal transduction pathways.8
  • Ocular effects: Anthocyanosides have been shown to exert direct effects on the retina, including the alteration of local enzymatic reactions and enhancement of the recovery of rhodopsin.9 The multi-ingredient product Mirtogenol (Pycnogenol® – French maritime pine bark extract and Mirtoselect® – standardized bilberry extract) has been reported to lower intraocular pressure and improve ocular blood flow.37
  • Smooth muscle relaxant effects: Anthocyanoside extracts have been shown to have smooth muscle-relaxing activity, which may account for their purported effects in one series of women with dysmenorrhea.18 Bioflavonoids and extracts of anthocyanosides (such as those present in bilberry) have been shown to relax vascular smooth muscles in experimental models, possibly via stimulation of prostaglandins.21,22,23
  • Vasoprotective effects: Flavonoids have been shown in vitro to reduce capillary permeability and fragility. Anthocyanosides have been studied for their potential protective effect in disorders due to abnormal capillary fragility.33

Pharmacodynamics/Kinetics:

  • There are limited data regarding the pharmacodynamics and kinetics of Vaccinium myrtillus (bilberry) anthocyanosides (VMA). In one animal study, bilberry anthocyanosides were rapidly distributed after intra-peritoneal injection and intravenous administration.38 In another animal study, bilberry anthocyanosides were found to be eliminated via the bile and urine with a modest level of liver extraction.32
  • Bioavailability in animals is low. Following oral doses in rats, plasma levels of VMA reached a peak at 15 minutes and declined rapidly within two hours, and the absolute bioavailability was 1.2% of the administered dose.38 The gastrointestinal absorption of VMA was 5% of the administered dose. Another study found a differential affinity of VMA for certain tissues (especially skin and kidney).20 This suggests that different tissues may have more persistent local concentrations.
References:

  1. Martin-Aragon S, Basabe B, Benedi JM, and et all. In vitro and in vivo antioxidant properties of Vaccinium myrtillus. Pharmaceutical Biology 1999;37(2):109-113.
  2. Prior R, Cao G, Martin A, and et all. Antioxidant capacity as influence by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agricult Food Chem 1998;46:2686-2693.
  3. Martin-Aragon S, Basabe B, Benedi J, and et all. Antioxidant action of Vaccinium myrtillus L. Phytotherapy 1998;46:S104-S106.
  4. Laplaud, P. M., Lelubre, A., and Chapman, M. J. Antioxidant action of Vaccinium myrtillus extract on human low density lipoproteins in vitro: initial observations. Fundam Clin Pharmacol 1997;11(1):35-40. 9182074
  5. Bomser, J., Madhavi, D. L., Singletary, K., and Smith, M. A. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med 1996;62(3):212-216.
  6. Zhao, C., Giusti, M. M., Malik, M., Moyer, M. P., and Magnuson, B. A. Effects of commercial anthocyanin-rich extracts on colonic cancer and nontumorigenic colonic cell growth. J Agric Food Chem  10-6-2004;52(20):6122-6128. 15453676
  7. Morazzoni P and Magistretti MJ. Effects of Vaccinium myrtillus anthocyanosides on prostacyclin-like activity in rat arterial issue. Fitoterapia 1986;57:11-14.
  8. Magistretti, M. J., Conti, M., and Cristoni, A. Antiulcer activity of an anthocyanidin from Vaccinium myrtillus. Arzneimittelforschung  1988;38(5):686-690. 3415709
  9. Cluzel, C., Bastide, P., Wegman, R., and Tronche, P. [Enzymatic activities of retina and anthocyanoside extracts of Vaccinium myrtillus (lactate dehydrogenase, alpha-hydroxybutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, alpha-glycerophosphate dehydrogenase, 5-nucleotidase, phosphoglucose isomerase)]. Biochem Pharmacol 1970;19(7):2295-2302. 4329039
  10. Morazzoni P and Bombardelli E. Vaccinium myrtillus L. Fitoterapia 1996;66:3-29.
  11. Pulliero G, Montin S, Bettini V, and et al. Ex vivo study of the inhibitory effects of Vaccinium myrtillus anthocyanosides on human platelet aggregation. Fitoterapia 1989;60:69-75.
  12. Bottecchia D. Preliminary report on the inhibitory effect of vaccinium myrtillus anthocyanosides on platelet aggregation and clot retraction. Fitoterapia 1987;48:3-8.
  13. Zaragoza, F., Iglesias, I., and Benedi, J. [Comparative study of the anti-aggregation effects of anthocyanosides and other agents]. Arch Farmacol Toxicol 1985;11(3):183-188. 4096552
  14. Fdez, M., Zaragoza, F., and Alvarez, P. In vitro platelet aggregation effects of anthocyanosides of vaccinium myrtilus L. Anales de la Real Academia de Farmacia 1983;49:79-90.
  15. Bever B. Plants with oral hypoglycemic action. Q J Crude Drugs Res 1979;17:139-196.
  16. Allen, F. M. Blueberry leaf extract: Physiologic and clinical properties in relation to carbohydrate metabolism. 89:1577-81, 1927. JAMA 1927;89:1577-1581.
  17. Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 4-1-1983;32(7):1141-1148. 6342623
  18. Colombo D and Vescovini R. Controlled clinical trial of anthocyanosides from Vaccinium myrtillus in primary dysmenorrhea. G Ital Obstet Ginecol 1985;7:1033-1038.
  19. Mertz-Nielsen, A., Munck, L. K., Bukhave, K., and Rask-Madsen, J. A natural flavonoid, IdB 1027, increases gastric luminal release of prostaglandin E2 in healthy subjects. Ital J Gastroenterol  1990;22(5):288-290. 2134327
  20. Lietti, A., Cristoni, A., and Picci, M. Studies on Vaccinium myrtillus anthocyanosides. I. Vasoprotective and antiinflammatory activity. Arzneimittelforschung 1976;26(5):829-832. 9100
  21. Colantuoni, A., Bertuglia, S., Magistretti, M. J., and Donato, L. Effects of Vaccinium Myrtillus anthocyanosides on arterial vasomotion. Arzneimittelforschung  1991;41(9):905-909. 1796918
  22. Bettini V. Effects of Vaccinium myrtillus anthocyanosides on vascular smooth muscle. Fitoterapia 1984;55(5):265-272.
  23. Bettini V, Mayellaro F, Ton P, and et al. Interactions between Vaccinium myrtillusanthocyanosides and serotonin on splenic artery smooth muscle. Fitoterapia 1984;55(4):201-208.
  24. Brantner, A. and Grein, E. Antibacterial activity of plant extracts used externally in traditional medicine. J Ethnopharmacol 1994;44(1):35-40. 7990502
  25. Neef H, Declercq P, and Laekeman G. Hypoglycaemic activity of selected European plants. Phytotherapy Research 1995;9:45-48.
  26. Cristoni, A. and Magistretti, M. J. Antiulcer and healing activity of Vaccinium myrtillus anthocyanosides. Farmaco [Prat] 1987;42(2):29-43. 3582621
  27. Mitcheva, M., Astroug, H., Drenska, D., Popov, A., and Kassarova, M. Biochemical and morphological studies on the effects of anthocyans and vitamin E on carbon tetrachloride induced liver injury. Cell Microbiol 1993;39(4):443-448. 8329983
  28. Lyons, M. M., Yu, C., Toma, R. B., Cho, S. Y., Reiboldt, W., Lee, J., and van Breemen, R. B. Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem  9-24-2003;51(20):5867-5870. 13129286
  29. Rimando, A. M., Kalt, W., Magee, J. B., Dewey, J., and Ballington, J. R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 7-28-2004;52(15):4713-4719. 15264904
  30. Milbury, P. E., Graf, B., Curran-Celentano, J. M., and Blumberg, J. B. Bilberry (Vaccinium myrtillus) anthocyanins modulate heme oxygenase-1 and glutathione S-transferase-pi expression in ARPE-19 cells. Invest Ophthalmol Vis Sci 2007;48(5):2343-2349. 17460300
  31. Wu, Q. K., Koponen, J. M., Mykkanen, H. M., and Torronen, A. R. Berry phenolic extracts modulate the expression of p21(WAF1) and Bax but not Bcl-2 in HT-29 colon cancer cells. J Agric Food Chem 2-21-2007;55(4):1156-1163. 17243699
  32. Lietti, A. and Forni, G. Studies on Vaccinium myrtillus anthocyanosides. II. Aspects of anthocyanins pharmacokinetics in the rat. Arzneimittelforschung  1976;26(5):832-835. 989354
  33. Mian E. Anthocyanosides and microvessel walls: new findings on the mechanism of action of their protective effect in syndromes due to abnormal capillary fragility. Minerva Med 1977;68(52):3565-3581.
  34. Marcollet M, Bastide P, and Tronche P. Effet angio-protecteur des anthocyanosides de Vaccinium myrtillus odjective vis a vis de la liberation de la lactate deshydrogenase (LDH) et de ses isoenzymes cardiaques chez le rat soumis a une epreuve de nage. C R Soc Biol  1970;163:1786.
  35. Jonadet, M., Meunier, M. T., Bastide, J., and Bastide, P. [Anthocyanosides extracted from Vitis vinifera, Vaccinium myrtillus and Pinus maritimus. I. Elastase-inhibiting activities in vitro. II. Compared angioprotective activities in vivo]. J Pharm Belg 1983;38(1):41-46. 6553084
  36. Boniface, R. and Robert, A. M. [Effect of anthocyanins on human connective tissue metabolism in the human]. Klin Monatsbl Augenheilkd  1996;209(6):368-372. 9091714
  37. Steigerwalt, R. D., Gianni, B., Paolo, M., Bombardelli, E., Burki, C., and Schonlau, F. Effects of Mirtogenol on ocular blood flow and intraocular hypertension in asymptomatic subjects. Mol Vis  2008;14:1288-1292. 18618008
  38. Morazzoni, P., Livio, S., Scilingo, A., and Malandrino, S. Vaccinium myrtillus anthocyanosides pharmacokinetics in rats. Arzneimittelforschung  1991;41(2):128-131. 2043174

SUMMARY

Wild bilberries and wild blueberries are important fruits full of polyphenols, anthocyanins, antioxidants, and Nrf2 activators that help to make Ultimate Protector such an outstanding nutritional supplement.

 

up-4 elderberry wild bilberry and wild blueberry

Ultimate Protector provides wild bilberry and wild blueberry, and 27 other Nrf2 activator-containing plant-based ingredients.

ADDITIONAL RESOURCES