1

ULTIMATE PROTECTOR DESIGN CONSIDERATIONS

Dr. Hank Liers, PhD ultimate protectorIn early 2012 a friend of mine told me about a new product he was taking from a company called LifeVantage. He informed me all he needed to take on a daily basis was one small tablet in order to be protected against free-radical damage of any sort. And that he didn’t even need to take Vitamin C!

I have formulated nutritional supplements for a long time (>25 years), so I knew there was something not quite right about what I was hearing. When I learned he was buying from a multi-level marketing company his story became understandable, but not believable.

I decided I would investigate the product in order to better understand the logic behind it. I watched videos regarding the science underpinning this product, and I read the scientific literature for months.

What I learned was intriguing, so I decided I would formulate a product dealing with free-radical protection that would take the science and the art of formulation to new levels. I would name the product “Ultimate Protector”!!

More recently in early 2019, I decided to upgrade the product because of significant advances in materials and research findings. It is clearer now that most plant polyphenols have Nrf2 activity and often there are many phytochemical (as many as 50 or more) in any specific plant that are both antioxidants and Nrf2 activators. Even well known ingredients such as n-acetyl-l- cysteine, lipoic acid, vitamin C, and black pepper extract exhibit Nrf2 activity. Our upgraded product has been named Ultimate Protector+.

 

Ultimate Protector+

BACKGROUND

According to Dr. Joe McCord, in the last 10 years or so there have been over 80,000 papers in peer reviewed publications that relate to Nrf2 activators. Many of these have clearly demonstrated that plant polyphenols are perhaps the best way to intake substances that will stimulate the endogenous production of protective enzymes. In fact, many reputable scientists believe the best way to prevent cancer is via the use of plant polyphenols.

There are also many papers in the scientific literature that have shown the consumption of fruits and vegetables (including herbs) that are inherently high in polyphenols to be one of the best ways to improve health and prevent conditions of poor health. Please see my blog article on this subject: “The Amazing Healing Potential of Natural Nrf2 Activators” (http://www.integratedhealthblog.com/amazing-healing-potential-natural-nrf2-activators/).

In the world of nutritional supplements it is not often that significant scientific/clinical studies are conducted on specific products. The reason for this is primarily economic. However, just as in the case of Nrf2 activators, hundreds of thousands of studies have been conducted by organizations around the world that show the benefits of specific ingredients or groups of ingredients, and these ingredients are used in the development of healthful nutritional supplements.

It is laudable that LifeVantage has had a few scientific/clinical studies done on their product containing five specific Nrf2 activators. This positively supports the huge amount of scientific papers on the subject. However, these few studies do not imply it is a better product than products developed using additional carefully-selected ingredients highlighted in the scientific literature. Progress is made continuously in the area of nutritional supplements allowing us to improve on existing products.

As an example of how being aware of the scientific literature on Nrf2 activators, as well as being experienced in the design of groundbreaking new nutritional products, I was recently delighted to observe that high ORAC5.0 values are associated with many of the best Nrf2 activators identified in the scientific literature. This is discussed in my blog article referenced above.

Indeed, this observation is in contrast to the statements by many (even the scientists) that taking antioxidants is unnecessary and perhaps harmful. It appears that these antioxidants may perform double duty by first operating as antioxidants in the body (including the gastrointestinal tract) and in the process become weak pro-oxidants that function as powerful Nrf2 activators. Of course, if you are not aware of ORAC5.0 testing, then it would not be possible to make such an observation.

ULTIMATE PROTECTOR GOALS

My goal when I formulated Ultimate Protector™ was to create a product with three basic functions. That is, 1) a source of non-GMO Vitamin C (1.5 gm/daily serving), 2) provide powerful antioxidant protection via proven high ORAC sources, and 3) a multiple ingredient source of many Nrf2 activators, thereby providing the body with means to produce a wide variety of protective enzymes endogenously.

VITAMIN C IN ULTIMATE PROTECTOR

It is important to realize Vitamin C is a vitamin that is a cofactor in at least eight enzymatic reactions, including several collagen syntheses reactions that when dysfunctional (usually because of lack of Vitamin C) cause the most severe symptoms of scurvy. In animals, these reactions are especially important in wound healing and in preventing bleeding from capillaries. It is important to understand that no other substance can provide these functions.

Vitamin C acts as an electron donor and/or hydrogen donor, and this ability makes it a potent antioxidant. It rapidly reduces superoxide and nitroxide radicals and scavenges hydroxyl, alkoxyl, and peroxyl radicals. It also reacts with non-radical species such as singlet oxygen and hypochlorous acid. It has been observed in in vitro experiments that Vitamin C acts as the first line of defense in the plasma. In order to learn more about the important role of Vitamin C, please see my blog article: “Vitamin C – An Amazing Nutrient” (www.integratedhealthblog.com/vitamin-c-an-amazing-nutrient/).

ORAC6.0 VALUES OF ULTIMATE PROTECTOR

The full spectrum of antioxidants derived from high ORAC fruits, vegetables, and herbs (as well as Vitamin C) provide extremely powerful exogenous sources of protection against oxidative stress. To obtain a quantitative measure of just how powerful these external sources are we elected to conduct ORAC testing.

The fact is that there are a variety of “free radicals” that operate in humans. The most important are the primary radicals hydroxyl, peroxyl, peroxynitrite, singlet oxygen, superoxide anion, and hypochlorite. Brunswick Labs has developed a test called ORAC6.0. This test expands the ORAC platform to measure the antioxidant capacity against each of the six primary reactive oxygen species mentioned above (not just against the peroxyl radical as ORAC does). ORAC6.0 substantially improves broad-spectrum antioxidant analysis and gives evidence of the diverse antioxidant potential of natural products against radicals.

Recently [8/2019] Brunswick Labs has tested ULTIMATE PROTECTOR+™ using the new ORAC6.0 test. The results reveal an incredible overall ORAC6.0 value of 272,743 µmole TE/gram (i.e., 272,743 per gram!). This corresponds to a total ORAC6.0 value per serving of over 968,000 μmole TE per serving. In addition, the ORAC5.0 value was measured to be over 950,000 μmole TE per serving. The results have shown that the formula offers excellent protection against all of the six major types of free radicals found in the body.

 

Ultimate Protector+

Ultimate Protector+ is new and improved!

Nrf2 CONSIDERATIONS REGARDING ULTIMATE PROTECTOR

In the development of Ultimate Protector+™, I have been able to find an extremely strong ingredient called SFB® (Standardized Fruit Blend) that contains 9 different fruit extracts that have been shown to be very powerful antioxidants and Nrf2 activators. These are details below.

1. SFB® – (Standardized Fruit Blend)

SFB® is a nutritious, non-GMO blend that provides a broad spectrum of polyphenols, anthocyanins, and other antioxidants derived from water and/or ethanol extracts of whole red grape (Vitis vinifera), cranberry (Vaccinium macrocarpon), pomegranate (Punica granatum) with >75% polyphenols, blueberry (Vaccinium uliginosum), apple (Malus pumilla Mill), mangosteen (Garcinia mangostana), bilberry (Vaccinium myrtillis), chokeberry (Aronia arbutifolia), and goji berry (Lycium barbarum). This powder has an ORAC value in excess of 9,000 µmole TE/g and contains >50% polyphenols.

Polyphenols and anthocyanins are not all created equal. Every fruit, vegetable and herb provides its own set of unique polyphenols and anthocyanins that reside in the body for different lengths of time and in different locations, providing a range of benefits. SFB® has been designed to provide a wide range of plant polyphenols, flavonoids, anthocyanins, catechins, OPCs, zeaxanthin and other carotinoids, etc. Published research associates these plant ingredients with healthy aging, inflammation management, improved blood sugar metabolism, and cardiovascular disease management.

SFB® provides the following benefits: Superior source of natural antioxidants and Nrf2 activators, helps ameliorate the effects of premature aging, promotes cardiovascular health, promotes healthy brain function and mental acuity, promotes healthy vision, promotes healthy blood sugar levels, and is an excellent source of flavonoids and organic acids.

I have prepared detailed blog articles for the ingredients in SFB®. Below these are summarized and links to the articles are provided.

a) Cranberry Extract

Ultimate Protector+ Includes Cranberry

Ultimate Protector+ Includes Cranberry Extract

Cranberry extract is an especially good source of antioxidant polyphenols. In animal studies, the polyphenols in cranberries have been found to decrease levels of total cholesterol and so-called “bad” cholesterol. Cranberries may also inhibit the growth of tumors in human breast tissue and lower the risk of both stomach ulcers and gum disease.

Here is a list of the antioxidant and anti-inflammatory phytonutrients in found in cranberry extract.

Type of Phytonutrient Specific Molecules
Phenolic Acids hydroxybenzoic acids including vanillic acids;
—Phenolic Acids (cont.) hydroxycinnamic acids inculding caffeic,
—Phenolic Acids (cont.) coumaric, cinnamic, and ferulic acid
Proanthocyanidins epicatechin oligomers
Anthocyanins cyanidins, malvidins, and peonidins
Flavonoids quercetin, myricetin, kaempferol
Triterpenoids ursolic acid

OTHER CRANBERRY INFORMATION

    • Cranberries hold significantly high amounts of phenolic flavonoid phytochemicals called oligomeric proanthocyanidins (OPC’s). Scientific studies have shown that consumption of the berries have potential health benefits regarding cancer, aging and neurological diseases, inflammation, diabetes, and bacterial infections.
    • Antioxidant compounds in cranberry extract including OPC’s, anthocyanidin flavonoids, cyanidin, peonidin and quercetin may support cardiovascular health by counteracting against cholesterol plaque formation in the heart and blood vessels. Further, these compounds help the human body lower LDL cholesterol levels and increase HDL-good cholesterol levels in the blood.
    • Scientific studies show that cranberry juice consumption offers protection against gram-negative bacterial infections such as E.coli in the urinary system by inhibiting bacterial-attachment to the bladder and urethra.
    • It is known that cranberries turns urine acidic. This, together with the inhibition of bacterial adhesion helps prevent the formation of alkaline (calcium ammonium phosphate) stones in the urinary tract by working against proteus bacterial-infections.
    • In addition, the berries prevent plaque formation on the tooth enamel by interfering with the ability of the gram-negative bacterium, Streptococcus mutans, to stick to the surface. In this way cranberries helps prevent the development of cavities.
    • The berries are also good source of many vitamins like vitamin C, vitamin A, ß-carotene, lutein, zeaxanthin, and folate and minerals like potassium, and manganese.
  • Oxygen Radical Absorbance Capacity (ORAC) demonstrates cranberry at an ORAC score of 9584 µmol TE units per 100 g, one of the highest in the category of edible berries.

b) Pomegranate Extract

Ultimate Protector+ Includes Pomegranate

Ultimate Protector+ Includes Pomegranate Extract

For thousands of years, the pomegranate has been extensively used as a source of food and medicine. Full of antioxidants, vitamin C and potassium, pomegranate has been used to control body weight, reduce cholesterol, fight against cell damage, and inhibit viral infections. Pomegranate extracts have anti-bacterial effects.

Pomegranates are rich in ellagic acid, gallic acid, lignans, polyphenols and other bioactive compounds, and have been shown to lower blood pressure and enhance vascular function. Furthermore, it can offset some of the negative effects of medications and chemicals. These compounds occur naturally in its peel, seeds, leaf and juice. The seeds are high in p-coumaric acid, plant sterols, tannins and fatty acids. In addition to their antihypertensive effects, they may help reduce blood sugar levels.

Pomegranate fruit is a rounded berry with a thick reddish skin covering approximately 200–1400 white to deep red or purple seeds. Pomegranate seeds are edible and hold strong antioxidant and anti-inflammatory properties due to their high content of hydrolysable tannins and anthocyanins. As compared to the antioxidant activity of vitamin E, β-carotene, and ascorbic acid, the pomegranate antioxidants appear unique due to combinations of a wide array of polyphenols, having a broader range of action against several types of free radicals. As compared to the recognized antioxidants in red wine and green tea, anthocyanins from pomegranate fruit possess significantly higher antioxidant activity.

Pomegranate has been used in various medicinal systems of medicine for the treatment and therapy of a multitude of diseases and ailments. In the ancient Indian medicinal system, i.e., in Ayurvedic medicine, the pomegranate was considered to be a whole pharmacy unto itself. It was recommended to be used as an antiparasitic agent and to treat diarrhea and ulcers. The medicinal properties of pomegranate have sparked significant interest in today’s scientific community as evidenced by the scientific research relating to health benefits of pomegranate that have been published in last few decades.

Studies have shown that pomegranate and its constituents can efficiently affect multiple signaling pathways involved in inflammation, cellular transformation, hyperproliferation, angiogenesis, initiation of tumorigenesis, and eventually suppressing the final steps of tumorigenesis and metastasis. The pomegranate constituents are shown to modulate transcription factors, pro-apoptotic proteins, anti-apoptotic proteins, cell cycle regulator molecules, protein kinases, cell adhesion molecules, pro-inflammatory mediators, and growth factors.

c) Chokeberry (Aronia)

Ultimate Protector+ Includes Chokeberry

Ultimate Protector+ Includes Chokeberry Extract

HEALTH BENEFITS OF CHOKEBERRY (ARONIA)

Aronia melanocarpa (black chokeberry) has attracted scientific interest due to its deep purple, almost black pigmentation that arises from dense contents of polyphenols, especially anthocyanins. Total polyphenol content is 1752 mg per 100 g in fresh berries, anthocyanin content is 1480 mg per 100 g, and proanthocyanidin concentration is 664 mg per 100 g. These values are among the highest measured in plants to date.

The plant produces these pigments mainly in the leaves and skin of the berries to protect the pulp and seeds from constant exposure to ultraviolet radiation and production of free radicals. By absorbing UV rays in the blue-purple spectrum, leaf and skin pigments filter intense sunlight, serve antioxidant functions and thereby have a role assuring regeneration of the species.

Analysis of polyphenols in chokeberries has identified the following individual chemicals (among hundreds known to exist in the plant kingdom): cyanidin-3-galactoside, cyanidin-3-arabinoside, quercetin-3-glycoside, epicatechin, caffeic acid, delphinidin, petunidin, pelargonidin, peonidin, and malvidin. All these except caffeic acid are members of the flavonoid category of phenolics.

In a standard measurement of antioxidant strength, the oxygen radical absorbance capacity or ORAC, demonstrates aronia to have one of the highest values yet recorded for a fruit — 16,062 micro moles of Trolox Eq. per 100 g. The components contributing to this high measurement were both anthocyanins and proanthocyanidins, with the proanthocyanidin level “among the highest in foods”, which may explain their potent astringent taste.

d) Goji Berry

Ultimate Protector+ Includes Goji Berry

Ultimate Protector+ Includes Goji Berry Extract

Goji Berries contain abundant polysaccharides (LBPs, comprising 5%–8% of the dried fruits), scopoletin (6-methoxy-7-hydroxycoumarin, also named chrysatropic acid, ecopoletin, gelseminic acid, and scopoletol), the glucosylated precursor, and stable vitamin C analog 2-O-β-D-glucopyranosyl-L-ascorbic acid, carotenoids (zeaxanthin and β-carotene), betaine, cerebroside, β-sitosterol, flavonoids, amino acids, minerals, and vitamins (in particular, riboflavin, thiamin, and ascorbic acid).

The predominant carotenoid is zeaxanthin, which exists mainly as dipalmitate (also called physalien or physalin). The content of vitamin C (up to 42 mg/100 g) in goji berry (also known as wolfberry) is comparable to that of fresh lemon fruits. As to the seeds, they contain zeaxanthin (83%), β-cryptoxanthin (7%), β-carotene (0.9%), and mutatoxanthin (1.4%), as well as some minor carotenoids.

In fact, increasing lines of experimental studies have revealed that L. barbarum berries have a wide array of pharmacological activities, which is thought to be mainly due to its high LBPs content. Water-soluble LBPs are obtained using an extraction process that removes the lipid soluble components such as zeaxanthin and other carotenoids with alcohol. LBPs are estimated to comprise 5%–8% of LBFs and have a molecular weight ranging from 24 kDa to 241 kDa. LBPs consist of a complex mixture of highly branched and only partly characterized polysaccharides and proteoglycans.

The glycosidic part accounts, in most cases, for about 90%–95% of the mass and consists of arabinose, glucose, galactose, mannose, rhamnose, xylose, and galacturonic acid. LBPs are considered the most important functional constituents in LBFs. Different fractions of LBPs have different activities and the galacturonic acid content is an imperative factor for activities of LBP. The bioactivities of polysaccharides are often in reverse proportion with their molecular weights. Increasing lines of evidence from both preclinical and clinical studies support the medicinal, therapeutic, and health-promoting effects of LBPs.

e) Mangosteen

Ultimate Protector+ Includes Mangosteen

Ultimate Protector+ Includes Mangosteen Extract

The Mangosteen extract in Ultimate Protector+ has been extracted with non-GMO food grade ethanol and distilled water. Testing has indicated the product contains over 10% polyphenols.

Mangosteen extract in obtained from the skin and whole fruit for which numerous biological activities have been reported including: antimutagenic, antibacterial, hypocholesterolemic, antioxidant, and protective against tumorigenesis.

Mangosteen contains nutrients with antioxidant capacity, such as vitamin C and folate. Plus, it provides xanthones — a unique type of plant compound known to have strong antioxidant properties. In several test-tube and animal studies, the antioxidant activity of xanthones has resulted in anti-inflammatory, anticancer, anti-aging, heart protective, and antidiabetic effects.

Additionally, some research suggests that certain plant compounds in mangosteen may have antibacterial properties — which could benefit your immune health by combating potentially harmful bacteria. In a 30-day study in 59 people, those taking a mangosteen-containing supplement experienced reduced markers of inflammation and significantly greater increases in healthy immune cell numbers compared to those taking a placebo.

f) Apple Extract

Ultimate Protector+ Includes Apple

Apples contain a large concentration of flavonoids, as well as a variety of other phytochemicals, and the concentration of these phytochemicals may depend on many factors, such as cultivar of the apple, harvest and storage of the apples, and processing of the apples. The concentration of phytochemicals also varies greatly between the apple peels and the apple flesh.

Some of the most well studied antioxidant compounds in apples include quercetin-3-galactoside, quercetin-3-glucoside, quercetin-3-rhamnoside, catechin, epicatechin, procyanidin, cyanidin-3-galactoside, coumaric acid, chlorogenic acid, gallic acid, and phloridzin. Recently researchers have examined the average concentrations of the major phenolic compounds in six cultivars of apples. They found that the average phenolic concentrations among the six cultivars were: quercetin glycosides, 13.2 mg/100 g fruit; vitamin C, 12.8 mg/100 g fruit; procyanidin B, 9.35 mg/100 g fruit; chlorogenic acid, 9.02 mg/100 g fruit; epicatechin, 8.65 mg/100 g fruit; and phloretin glycosides, 5.59 mg/100 g fruit.

The compounds most commonly found in apple peels consist of the procyanidins, catechin, epicatechin, chlorogenic acid, phloridzin, and the quercetin conjugates. In the apple flesh, there is some catechin, procyanidin, epicatechin, and phloridzin, but these compounds are found in much lower concentrations than in the peels. Quercetin conjugates are found exclusively in the peel of the apples. Chlorogenic acid tends to be higher in the flesh than in the peel.

Because the apple peels contain more antioxidant compounds, especially quercetin, apple peels may have higher antioxidant activity and higher bioactivity than the apple flesh. Research showed that apples without the peels had less antioxidant activity than apples with the peels. Apples with the peels were also better able to inhibit cancer cell proliferation when compared to apples without the peels. More recent work has shown that apple peels contain anywhere from two to six times (depending on the variety) more phenolic compounds than in the flesh, and two to three times more flavonoids in the peels when compared to the flesh. The antioxidant activity of these peels was also much greater, ranging from two to six times greater in the peels when compared to the flesh, depending on the variety of the apple. This work is supported a study which found that rats consuming apple peels showed greater inhibition of lipid peroxidation and greater plasma antioxidant capacity when compared to rats fed apple flesh.

Many of these phytochemicals from apples have been widely studied, and many potential health benefits have been attributed to these specific phytochemicals. The procyanidins, epicatechin and catechin, have strong antioxidant activity and have been found to inhibit low density lipoprotein (LDL) oxidation in vitro. In mice, catechin inhibits intestinal tumor formation and delays tumors onset. One study found that chlorogenic acid has very high alkyl peroxyl radical (ROO•) scavenging activity. Compared to about 18 other antioxidant compounds (including quercetin, gallic acid, α-tocopherol), chlorogenic was second only to rutin. Since ROO• may enhance tumor promotion and carcinogenesis, chlorogenic acid may add to the protective effect of apples against cancer. Chlorogenic acid has been found to inhibit 8-dehydroxy-deoxyguanosine formation in cellular DNA in a rat model following treatment with 4-nitroquinoline-1-oxide.

Quercetin is also a strong antioxidant, and is thought to have potential protective effects against both cancer and heart disease. Briefly, quercetin has been found to down regulate expression of mutant p53 in breast cancer cells, arrest human leukemic T-cells in G1, inhibit tyrosine kinase, and inhibit heat shock proteins. Quercetin has protected Caco-2 cells from lipid peroxidation induced by hydrogen peroxide and Fe2+. In mice liver treated with ethanol, quercetin decreased lipid oxidation and increased glutathione, protecting the liver from oxidative damage. Recently, it has been found that high doses of quercetin inhibit cell proliferation in colon carcinoma cell lines and in mammary adenocarcinoma cell lines, but at low doses quercetin increased cell proliferation (20% in colon cancer cells and 100% in breast cancer cells). However, low doses of quercetin (10 uM) inhibited cell proliferation in Mol-4 Human Leukemia cells and also induced apoptosis. Quercetin inhibited intestinal tumor growth in mice, but not in rats. Low levels of quercetin inhibited platelet aggregation, calcium mobilization, and tyrosine protein phosphorylation in platelets. Modulation of platelet activity may help prevent cardiovascular disease.

g) Blueberry and Bilberry Extract

wild bilberry and wild blueberry
Wild bilberry and wild blueberry provide Nrf2 activators.

The key compounds in bilberry fruit are called anthocyanins and anthocyanosides. These compounds help build strong blood vessels and improve circulation to all areas of the body. They also prevent blood platelets from clumping together (helping to reduce the risk of blood clots), and they have antioxidant properties (preventing or reducing damage to cells from free radicals). Anthocyanins boost the production of rhodopsin, a pigment that improves night vision and helps the eye adapt to light changes.

Bilberry fruit is also rich in tannins, a substance that acts as an astringent. The tannins have anti-inflammatory properties and may help control diarrhea.

Bilberries have been shown to have the highest Oxygen Radical Absorbance Capacity (ORAC) rating of more than 20 fresh fruits and berries. The antioxidant properties of bilberries were shown to be even stronger than those of cranberries, raspberries, strawberries, plums, or cultivated blueberries.

The antioxidant powers and health benefits of bilberries and blueberries can be attributed to a number of remarkable compounds contained in them, including the following:

  • Anthocyanins
    • malvidins
    • delphinidins
    • pelargonidins
    • cyanidins
    • peonidins
  • Hydroxycinnamic acids
    • caffeic acids
    • ferulic acids
    • coumaric acids
  • Hydroxybenzoic acids
    • gallic acids
    • procatchuic acids
  • Flavonols
    • kaempferol
    • quercetin
    • myricetin
  • Other phenol-related phytonutrients
    • pterostilbene
    • resveratrol
  • Other nutrients
    • lutein
    • zeaxanthin
    • Vitamin K
    • Vitamin C
    • manganese

Other Ingredients

As with the original Ultimate Protector formula, we have included Curcumin (95% min. curcuminoids) and Trans-resveratrol (greater than 98%) because they are important in the Nrf2 and antioxidant literature. In addition, we have included Green Tea extract (high in EGCG) and VinCare® Whole Grape Extract (also present in SFB® and is very high in oligomeric proanthocyanidins – OPCs). 

These additional ingredients are detailed below:

1) Curcumin

Ultimate Protector+ Includes Curcumin

Ultimate Protector+ Includes Curcumin

We have included Curcumin (95% curcuminoids in ULTIMATE PROTECTOR™. This ingredient contains three main chemical compounds – Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin – collectively known as Curcuminoids and all derived from Turmeric. Curcumin has been shown to be one of the most potent Nrf2 transcription factor activators. Studies have reported that curcumin and turmeric protect the liver against several toxicants both in vitro and in vivo. A number of reports showed the curative action of turmeric and curcuminoids. Curcumin is a potent scavenger of free radicals such as superoxide anion radicals, hydroxyl radicals, and nitrogen dioxide radicals. It exerts powerful antioxidant and anti-inflammatory properties.


2) Trans-Resveratrol (98% from Polygonum cuspidatum – giant knotweed)

Knotweed (Polygonum cuspidatum) is a major source for resveratrol.

Trans-resveratrol provides antioxidant protection, boosts cellular energy, and balances the immune system. It has been proven in studies to activate the SIRT1 longevity gene and enhance cellular productivity. Several research studies have shown that trans-resveratrol activates Nrf2 transcription factor, significantly modulates biomarkers of bone metabolism, inhibits pro-inflammatory enzymes such as COX-1 and COX-2, and exhibits cardioprotective effects, neuroprotective properties, and caloric restrictive behavior. Trans-resveratrol has shown the ability to increase the number of mitochondria thereby increasing total daily energy. Studies have shown that trans-resveratrol promotes an increase in mitochondrial function. Increased mitochondrial function translates into an increase in energy availability, improved aerobic capacity, and enhanced sensorimotor function. Trans-resveratrol has an ORAC value of 31,000 µmole TE/g.


3) Green Tea Extract

Ultimate Protector+ Includes Green Tea Extract

Ultimate Protector+ Includes Green Tea Extract

Green Tea Extract contains highly bioavailable bioflavonoid complexes that in research studies have been shown to have powerful antioxidant capability. Green tea extract is obtained from the unfermented leaves of Camellia sinensis for which numerous biological activities have been reported including: cell protective, antimicrobial, and antioxidant. The green tea extract in Ultimate Protector is extracted is extracted by non-GMO ethanol and distilled water and contains ~ 90% polyphenols and 50% epigallocatechingallate (EGCG).

Epigallocatechin gallate (EGCG) is the most abundant catechin compound in green tea. It is well established that EGCG is a potent antioxidant and anti-inflammatory agent. Epidemiological studies show that consumption of 100 or more mg of EGCG per day is beneficial, as it is the most potent Nrf2 activator among all green tea catechins. EGCG exhibits robust diffusion through bodily tissues, including the endothelium of the blood brain barrier.

EGCG has the capacity to activate Nrf2/ARE and induce Heme oxygenase-1 (HO-1) expression. Several studies have shown that EGCG can also interact with kinases, causing the disassociation of Nrf2/Keap1 complex.

Protective effects of EGCG have been reported against ischemia/reperfusion injury. Administration of EGCG showed improved neurologic scores, reduced infarct volume, and ameliorated neuronal apoptosis due to increased GSH biosynthesis (via Nrf2 activation) and decreased ROS content. By inducing the expression of Nrf2 and HO-1, EGCG increases important endogenous antioxidants in microglial cells.

4) VinCare® whole grape extract (seed, pulp, and skin)

Ultimate Protector+ Includes Whole Grape Extract

Ultimate Protector+ Includes Whole Grape Extract

Whole Grape Extract contains highly bioavailable bioflavonoid complexes that in research studies have been shown to have powerful antioxidant capability. The Oligomeric Proanthocyanidins (OPCs) in grape extract are able to strengthen collagen fibers in aging or damaged connective tissue and can act as a preventative against connective tissue degradation. Some research indicates that anthocyanidins, which are found in extracts of grape seed, skin, and stems (but not in grape seed extract), can reduce oxidized glutathione while at the same time become reduced themselves. In addition, extracts of grape skin and pulp (but not those of grape seed extract) contain trans-resveratrol that has been shown to have cell protective effects.

Grape seed extract has been reported to demonstrate a remarkable spectrum of biological, pharmacological and therapeutic properties against oxidative stress. The antioxidative activities of grape seed extract have been found to be much stronger than those of vitamins C and E. Studies have indicated that grape seed extract showed a protective effect on cardiovascular disease, nephropathy, atherosclerosis, and neuropathy, among other conditions.

Vincare® contains ~80% polypnenols and has an ORAC value of about 19,000 µmole TE/g. ORAC 5.0 testing of grape seed extract exhibits one of the highest values of any tested material at about 100,000 µmole TE/g.

It has been shown that grape seed OPCs activate nuclear erythroid2-related factor2 (Nrf2), which is a key antioxidative transcription factor, with the concomitant elevation of downstream hemeoxygenase-1 (HO-1). Click here to view an excellent article entitled Proanthocyanidins [OPCs] against Oxidative Stress: From Molecular Mechanisms to Clinical Applications.

Partial List of Phytochemicals in Ultimate Protector+

The total combination of freeze-dried and concentrated fruits, vegetables, and herbs in Ultimate Protector+ provides a wide range of choices to the body in terms of specific substances, including the following Phytochemicals: Anthocyandins, Beta-Carotene, Chlorogenic acid, Catechins, Curcuminoids, Ellagic acid, Ferulic acid, Lutein, Lycopene, Mangostins, Phenolic acids, Phloridzins, Polyphenols, Polysaccharides, Oligomeric Proanthocyanidins (OPCs), PteroStilbenes, Punicalagins, Quercetin, Trans-Resveratrol, Xanthones, and Zeaxanthins.

Additional Ingredients

Also included in Ultimate Protector+ are calcium and magnesium malate that support ATP and enzyme production in the body. In addition, the product contains Bioperine® a black pepper extract that has been shown to enhance the absorption of nutrients by 30–60 percent, enhances the absorption of curcuminoids by up to a factor of 20,  and is itself an Nrf2 activator!

COMPOSITION

Six veggie capsules provides the following percentages of the Daily Value:

Serving Size: 6 Veggie Capsules Servings per Container: 30
Amount Per Serving Amounts % Daily Value
Vitamin C (as 100% USP-grade, non-GMO ascorbic acid) 1,500 mg 1667%
Calcium (from calcium malate) 60 mg 6
Magnesium (from magnesium malate) 60 mg 15
SFB®† (50% polyphenols, Orac: 9,000 units/gm) 180 mg *
Curcumin (95% min. curcuminoids from Curcuma longa) (root) 135 mg *
Green Tea extract (92% polyphenols, 50% EGCG) 135 mg *
Trans-Resveratrol 98% 135 mg *
Vincare®† whole grape extract (80% polyphenols, Orac: 19,000 units/gm) 135 mg *
Bioperine®†† 7.5 mg *
*
* Daily Value not established

Other ingredients: vegetarian capsule (veggie cap), microcrystalline cellulose, silica, and ascorbyl palmitate.

Directions for Use: As a dietary supplement take two capsules three times daily with food, or as directed by a health care professional.

ULTIMATE PROTECTOR+ Does Not Contain: wheat, rye, oats, barley, corn, gluten, soy, egg, dairy, yeast, sugar, shellfish, GMOs, wax, preservatives, colorings, or artificial flavorings.

ULTIMATE PROTECTOR+ will be most effective when used in conjunction with other foundational nutritional supplements that support the body’s metabolism, including Multi Two or Mighty Multi-Vite!™ (therapeutic multivitamin formulas), Essential Fats plus E (essential fatty acids with Vitamin E), PRO-C™ (antioxidant formula), and one of our high-RNA Rejuvenate!™ superfoods.

†SFB® and VinCare® are registered trademark of Ethical Naturals, Inc.

†† Bioperine® is a registered trademark of Sabinsa Corporation.

ADDITIONAL RESOURCES

New Directions for Preventing Free-Radical Damage

Natural Phytochemical Nrf2 Activators for Chemoprevention

Hank Liers, PhD

HANK LIERS, PHD

Dr. Hank Liers is the CEO and chief product formulator for Health Products Distributors, Inc. He has been studying and using natural means of achieving health since 1984. Dr. Liers received his PhD in physics in 1969 from the University of Minnesota and has applied his analytical abilities to learning and applying a scientific approach to nutrition.

LEAVE A REPLY

Logged in as Hank Liers, PhD. Log out?

ADDITIONAL RESOURCES

OTHER RESOURCES

  • Description and Comparison of ORAC Tests for Well Known Plant Ingredients and Ultimate Protector™
  • Questions & Answers about Ultimate Protector
8

Natural Phytochemical Nrf2 Activators for Chemoprevention

Dr. Hank Liers here considers mechanisms involved in the activation of transcription factor Nrf2. Nrf2 is encoded by the NFE2L2 gene. Nrf2 can induce expression of genes encoding for antioxidant enzymes. Thus, it contributes to regulation of oxidative stress. Dr. Liers’ interest regards use of natural phytochemical Nrf2 activators for improving health. Also, see his post, “New Directions for Preventing Free-Radical Damage”(06.27.19).

INTRODUCTION
Nrf2 SIGNALING, FOODS, AND HEALTH

Dr. Hank Liers, PhD nrf2 activatorsDespite progress in the early detection and treatment of cancer, overall mortality rates for most cancers of epithelial origin have not declined during the past three decades. Consequently, in recent years attention has been directed to cancer prevention.

Carcinogenesis can be viewed as a multistep process in which the genes controlling proliferation, differentiation, and apoptosis are transformed and altered under selective environmental pressures.

Tumor development involves three distinct, yet closely linked, phases: initiation, promotion, and progression. The initiation phase is a rapid and irreversible event that occurs when a normal cell is exposed to a carcinogenic event. Frequently, unrepairable or misrepaired DNA damage happens in the initiation phase.

Promotion and progression processes are relatively longer processes than the initiation stage, and are considered reversible. Using various animal cancer models, scientists found that all three cancer development stages can be intervened by treatment with natural (or synthetic) chemicals.

Epidemiological and population studies also establish a close relationship between incidence of cancer and consumption of certain types of food.

The term “chemoprevention” was first coined in 1976 by Michael Sporn, when he referred to prevention of malignancy development by vitamin A and its synthetic analogs. Since then, chemoprevention has been adopted as one of the major tactics to modulate the process of carcinogenesis. Many research studies have proven this strategy is effective in reducing the incidence of cancer in well-defined high-risk groups.

Chemoprevention is by definition the use of natural (or pharmacologic) agents to inhibit the development of invasive cancer. The chemicals with a cancer preventive activity are referred to as chemopreventive agents. A chemopreventive agent can inhibit carcinogenesis either by blocking the DNA damage at initiation stage or by arresting or reversing the processes at promotion and progression stages. Most of the chemical substances used in cancer chemoprevention studies are natural phytochemicals found in food.

On the basis of the inhibition stages, chemopreventive agents have been classified into two categories, namely blocking agents and suppressing agents. Blocking agents act by preventing carcinogens from reaching the target sites, from undergoing metabolic activation, or from subsequently interacting with crucial cellular macromolecules such as DNA, RNA, and proteins at initiation stages.

Suppressing agents, on the other hand, inhibit the malignant transformation of initiated cells at either the promotion or the progression stage. Some agents may work on all three stages of carcinogenesis, and are hence classified into both categories.

DIETARY PHYTOCHEMICALS ARE NATURE’S CHEMOPREVENTIVE AGENTS

Many different animal models and cancer cell lines have been used to evaluate the chemopreventive values of phytochemicals, and have led to the discovery of new classes of chemopreventive agents. These agents include isothiocyanates (such as sulforaphane) from cruciferous vegetables, polyphenols from green and black tea, curcuminoids (from turmeric root), stilbenes such as resveratrol (from giant knotweed plant), flavonoids such as quercetin, and anthocyanidins (from many fruits and soybeans).

Progress also has been made in understanding the mode of action of newly identified chemopreventive agents. Exposure to the chemopreventive agents produces certain level of reactive oxygen species (ROS) or electrophiles, and causes mild oxidative/electrophilic stresses in cells.

Ultimate Protector+

Such mild oxidative stresses are sufficient to initiate the signaling pathways that, in turn, can activate a variety of cellular events, such as induction of phase II detoxification enzymes and antioxidant enzymes, expression of tumor-suppressor genes, and inhibition of cell proliferation and angiogenesis.

In order to survive under a variety of environmental or intracellular stresses, our cells have developed highly efficient protective mechanisms to protect themselves from oxidative or electrophilic challenges. Proteins that comprise phase II detoxification and antioxidant enzymes provide an enzymatic line of defense against reactive oxygen species. These enzymes include superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione S-transferase (GST), and glutamate cysteine ligase.

Induction of phase II and antioxidant enzymes are regulated at the DNA/gene level by antioxidant responsive element (ARE). ARE-mediated gene expression plays a central role in the cellular defense against cellular oxidative damage.

Experimental evidence supports the view that induction of ARE-mediated cytoprotective enzymes is a critical and sufficient mechanism to enable protection against carcinogenesis provoked by environmental and endogenous insults.

One of the key ARE-binding transcription factors is Nrf2. Induction of cytoprotective enzymes in response to ROS, electrophiles, and chemopreventive agents is a cellular event that is highly dependent on Nrf2 protein.

Nrf2 BOOSTS CELL DETOXIFICATION AND ANTIOXIDANT ENZYMES

By activating Nrf2 signaling, chemopreventive agents can increase cellular detoxification and antioxidant enzymes, thereby enhancing removal of reactive carcinogens and blocking carcinogenesis. This hypothesis has been tested in many studies.

For example, a study with sulforaphane (an isothiocyanate present abundantly in cruciferous vegetables) has shown that oral administration of this phytochemical could effectively block benzo[a]pyrene-induced forestomach tumors in mice. This protective effect was abrogated in mice that could not produce Nrf2, supporting a critical role of phase II detoxification and antioxidant enzymes in the prevention of carcinogenesis by chemopreventive agents.

Nrf2 is normally bound in the cytoplasm of cells to a protein called KEAP1. However, when an appropriate phytochemical agent attaches to a kinase receptor on the cell wall a phosphate group is released that causes the Nrf2 to be released. The Nrf2 then migrates into the cell nucleus and causes an antioxidant enzyme, such as SOD, to be released. This endogenously produced enzyme then can protect against ROS, electrophiles, and chemopreventive agents.

In practice, it has been found that a combination of multiple polyphenols works significantly better than single ingredients at activating Nrf2. In fact, in one experiment it was found that a combination of five ingredients all known to be Nrf2 activators was 18 times more effective than any single ingredient. Furthermore, it was found that this combination of five ingredients  increased levels of SOD by 30% and catalase by 56% after 120 days.

ULTIMATE PROTECTOR+
A POWERFUL, NATURAL Nrf2 ACTIVATION FORMULA FOR GREATER HEALTH

In view of the above information and the fact that new and more effective ingredients are available, we have updated our exceptional formula designed to maximize activation of Nrf2 in the body. This new product is ULTIMATE PROTECTOR+. It is among the most advanced, natural Nrf2 activator formula on the market today.

We include a broad range of Nrf2 activators in ULTIMATE PROTECTOR+. These activators source from a wide variety of freeze-dried and concentrated fruits, vegetables, and herbs. These include USP-grade non-GMO Vitamin C , SFB® standardized fruit blend (~50% polyphenols, high-ORAC powder: 9,000 µmole TE/g) from Grape, Cranberry, Pomegranate, Blueberry, Apple, Mangosteen, Bilberry, Chokeberry, and Goji Berry), Curcumin(standardized extract with 95% curcuminoids), Trans-Resveratrol(98% from Giant Knotweed), Green Tea Extract(90% polyphenols, 50% EGCG),  and VinCare® Whole Grape Extract (>80% polyphenols, ORAC>19,000 µmole TE/g). In addition the product contains Calcium Malate and Magnesium Malate, that support ATP and enzyme product and Bioperine® (a patented black pepper extract that significantly enhances absorption of all ingredients and is a known Nrf2 activator).

Phytochemicals provided by the array of freeze-dried and concentrated fruits, vegetables, and herbs in the formula include: Polyphenols, Phenolic acids, Proanthocyanidins (OPCs), Anthocyandins, Catechins, Glucosinolates, Zeaxanthin, Lutein, Lycopene, Beta Carotene, Chlorogenic acid, Ellagic acid, Quercetin, Quinic acid, Trans-Resveratrol, Ferulic acid, Punicalagins, Phloridzin, Polysaccharides, Xanthones and more.

In addition to these Nrf2 activators (above), ULTIMATE PROTECTOR+ contains an extremely broad array of plant based antioxidants from the same sources described above, as well as from non-GMO USP grade Vitamin C. All ingredients in this product have been used in chemoprevention protocols, as well as in protocols aimed at preventing free-radical damage in the body.

Ultimate Protector is now available on the HPDI website!

 

Ultimate Protector+Ultimate Protector+ is new and improved

 

REFERENCES

“Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells.”  Am J Physiol Lung Cell Mol Physiol 294: L478–L488, 2008.

“Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals.” Planta Med. 2008 Oct; 74(13): 1526–39. Epub 2008 Oct 20.

“Nrf2: a potential molecular target for cancer chemoprevention by natural compounds.” Antioxid Redox Signal. 2006 Jan–Feb; 8(1–2):99–106.

“Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models.” Acta Pharmacol Sin. 2007 Sep; 28(9): 1409–21.

“Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.” Acta Pharmacol Sin. 2007 Apr; 28(4): 459–72.

“Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-kappa B and AP-1 in abnormal cancer cells.” Food Chem Toxicol. 2008 Apr; 46(4): 1257–70. Epub 2007 Sep 15.

“Signal transduction events elicited by cancer prevention compounds.” Mutat Res. 2001 Sep 1; 480–481: 231–41.

“Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention.” Toxicology. 2010 Dec 5; 278(2): 229–41. Epub 2009 Oct 20.

“NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities.” Asia Pac J Clin Nutr. 2008; 17 Suppl 1:269–72.

“Regulation of NF-E2-Related Factor 2 Signaling for Cancer Chemoprevention: Antioxidant Coupled with Antiinflammatory.” Antioxid Redox Signal. 2010 Dec 1; 13(11): 1679–98. Epub 2010 Aug 17.

“Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention.” AAPS J. 2010 Mar; 12(1): 87–97. Epub 2009 Dec 15.

“Dietary chemopreventive compounds and ARE/EpRE signaling.” Free Radic Biol Med. 2004 Jun 15; 36(12): 1505–16.

 “Multiple molecular targets in cancer chemoprevention by curcumin.” AAPS J. 2006 Jul 7; 8(3): E443–9.

ADDITIONAL RESOURCES

Ultimate Protector™

The Amazing Healing Potential of Natural Nrf2 Activators – by Dr. Hank Liers

Preventing Free-Radical Damage Using Ultimate Protector™ – by Dr. Hank Liers

New Directions for Preventing Free-Radical Damage  – by Dr. Hank Liers

 

 

Ultimate Protector and the Role of Foundational Supplements for Health – by Fred Liers, PhD

6

New Directions For Preventing Free Radical Damage

Dr. Hank Liers, PhD free radical damage

As you may know, free radical damage is associated with virtually every major health condition. For many years we have recommended taking antioxidants to protect against free radicals and for preventing free radical damage to the body.

Antioxidants we recommend include Vitamin C, Vitamin E, plant polyphenols (e.g., grape seed extract), green tea extract, rutin and other bioflavonoids, and amino acids and peptides (e.g., n-acetyl-l-cysteine and glutathione) to deal with free radicals. Using this approach, individuals often achieve excellent results.

In the last ten years, a new approach has become a major topic of scientific interest and research. This approach utilizes substances that induce strong activation of the body’s own enzyme systems. Some natural substances under study include turmeric (curcumin), sulforaphane (found in broccoli sprouts), transresveratrol (found in red wine and giant knotweed), and green tea extracts.

Nrf2 Activators Produce Antioxidant Enzymes Combating Free Radicals

Researchers specifically are studying how enzyme-activating substances activate a transcription factor known as Nrf2 that causes the body to produce higher levels of enzymes including superoxide dismutase (SOD), catalase, heme oxygenase, and glutathione peroxidase.

A human clinical trial of a nutritional supplement containing turmeric, milk thistle extract, green tea extract, bacopa, and ashwaganda showed this combination of phytochemicals can reduce lipid peroxides in the body by significant amounts after only one month. Further research on this same supplement has shown these enzyme inducers affect the function of up to 4,000 genes in the body related to internal protection systems.

Currently there are several supplements on the market that are classified as Nrf2 activators. My own approach to this includes a combination approach using very powerful antioxidants (for example, those with extremely high ORAC5.0 values such as whole grape extract) in combination with Nrf2 activators derived from plant extracts (such as transresveratrol and curcumoids).

My updated product (Ultimate Protector+) using this approach will be available in July 2019 so be on the look out for it!

Ultimate Protector+

 

Ultimate Protector+ is a next-generation cell protection formula providing high levels of non-GMO Vitamin C, calcium and magnesium malate (supports ATP and enzyme production), a full spectrum of exceptionally high potency antioxidants (in accordance with ORAC6.0 testing), many of the most powerful natural Nrf2 protective enzyme activators, and Bioperine® to facilitate absorption of all ingredients – all in a single product! This potent combination of characteristics distinguishes our formula so that no other single product available today offers such complete protection. This is the best formula available for countering free radical damage. 100% non-GMO. 180 veggie caps per bottle.

ULTIMATE PROTECTOR+ contains USP-grade non-GMO Ascorbic Acid, SFB® standardized fruit blend (~50% polyphenols, high-ORAC powder: 9,000 µmole TE/g) from Grape, Cranberry, Pomegranate, Blueberry, Apple, Mangosteen, Bilberry, Chokeberry, and Goji Berry), Curcumin (standardized extract with 95% curcuminoids), Trans-Resveratrol (98% from Giant Knotweed), Green Tea Extract (>90% polyphenols, 50% EGCG), VinCare® Whole Grape Extract (>80% polyphenols, ORAC>19,000 µmole TE/g), Calcium Malate, Magnesium Malate, and Bioperine® (a patented black pepper extract that enhances absorption of all ingredients and is a known Nrf2 activator).

ULTIMATE PROTECTOR+ CONTAINS THREE MODES OF ACTION

ULTIMATE PROTECTOR+provides completecoverage for free-radical protection by satisfying three distinct needs in single cell protection formula:

Mode 1) A non-GMO Vitamin C product. Ultimate Protector+contains a Vitamin C formula without genetically modified sources of corn, potatoes, or beets. 100% Non-GMO Vitamin C!

Mode 2) A single, powerful antioxidant formula. Ultimate Protector+ provides a powerful antioxidant formula offering a broad range of extremely high-ORAC plant source antioxidants. These antioxidants should protect against the full range of free radicals found in the human body including: superoxide anion (O2·-), peroxyl radicals (ROO·), hydroxyl radicals (HO·), singlet oxygen (1O2), peroxynitrite (ONOO-), and hypochlorite (HOCl).

Antioxidants function as a vital line of defense against free radicals by blocking their attack on DNA, vital proteins, lipids, and amino acids. Until now, efforts to identify the effect of antioxidants on all six types of free radicals were constrained by limited testing procedures. However, new technological developments have resulted in a comprehensive testing method called the Total ORAC6.0 assay. Because of the development of the Total ORAC6.0™ test, it is now possible to target and measure the effects of antioxidants on the six major types of free radicals found in the body. Recently [8/2019] Brunswick Labs has tested ULTIMATE PROTECTOR+™ using the new ORAC6.0 test. The results reveal an incredible overall ORAC6.0 value of 272,743 µmole TE/gram (i.e., 272,743 per gram!). This corresponds to a total ORAC6.0 value per of over 968,000 μmole TE per serving of six small capsules. In addition, the ORAC5.0 value was measured to be over 950,000 μmole TE per serving. The results have shown that the formula offers excellent protection against all of the six major types of free radicals found in the body.

Mode 3) A full spectrum of Nrf2 activators. Ultimate Protector+is a supplement providing a broad range of the most powerful natural Nrf2 transcription factor activators that allow the body to make its own antioxidant enzymes (e.g., superoxide dismutase (SOD), catalase, heme oxygenase, and glutathione peroxidase). Scientific research has shown that these are found in a wide range of fruits, vegetable, and herbs and that products which provide a wide range of Nrf2 activators give significantly higher levels of the endogenously produced antioxidant enzymes.

 

 

0

PRO-C ANTIOXIDANT FORMULA UPDATE + VIDEO

Dr. Hank Liers, PhD pro-c™ pro-c super antioxidant formulaFred Liers PhD pro-c antioxidant vitamin c nrf2 formulaLooking for an advanced antioxidant formula? Already using or recommending vitamin C? Curious about cellular Nrf2 activation? Look no further than PRO-C™.

PRO-C™ is among the most effective antioxidant formulas available. It is an HPDI foundational supplement that works most effectively when used with multivitamins, essential fats, and superfoods. However, it is also an excellent standalone formula that can rapidly provide the body with extremely high protection from free radicals.

We ourselves have taken PRO-C daily for many years with excellent results. Our personal experience together with detailed feedback from health professionals and end-users affirms the effectiveness of PRO-C as a super-antioxidant–vitamin C-Nrf2 activator formula.

PRO-C provides 500 mg of buffered vitamin C per capsule (buffered with calcium, magnesium, and zinc) along with grape extract (seed, skin, pulp) and green tea extract (95% polyphenols). In addition, we include a special combination of the “network antioxidants” l-glutathione (reduced), n-acetyl-l-cysteine (NAC), r-lipoic acid, and selenium. Vitamin B2 and Vitamin B6 in coenzyme forms support the enzymatic effectiveness of the “network antioxidants”. The formula works so well because this combination of ingredients leverages the antioxidant power of vitamin C, grape extract, green tea extract, and the other nutrients to act synergistically in order to maximize effectiveness.

FORMULATION HISTORY AND THE SCIENCE BEHIND PRO-C™

What you may not know is the history of the development PRO-C and the scientific knowledge on which Dr. Hank Liers based his formulation of it.

Dr. Hank formulated his first product in 1989. It was a potent antioxidant formula he called PYC-C™ (sounds like “pixie”). PYC-C consisted of a combination of buffered Vitamin C (including magnesium, calcium, and zinc ascorbates) and pycnogenols from pine bark.

Much of the scientific research data Dr. Hank collected during the development of PYC-C regarding oligomeric proanthocyanidins (OPC) he later incorporated into an article (currently published on this blog) titled “Review of Scientific Research on Oligomeric Proanthocyanidins (OPC)” (rev. 2017)

By 1997 Dr. Hank had gathered a great deal of new scientific information regarding green tea catechins and the nutrients termed “network antioxidants” by Dr. Lester Packer, director of Packer Lab at University of California, Berkeley. Beyond this information, Dr. Hank studied additional research regarding how various nutrients worked together synergistically. At that point, he was ready to formulate the new, improved PRO-C™ super antioxidant formula.

PRO-C combines the ingredients of PYC-C (now known as OPC-C™) and uses grape pulp, skin, and seed extract with green tea extract (with high polyphenols >95% and EpiGalloCatechinGalate (EGCG) >45%), n-acetyl-l-cysteine (NAC), reduced glutathione (GSH), R-lipoic acid, selenium, and coenzyme Vitamins B2 and B6.

PRO-C super antioxidant formula 180 cap 90 cap

HPDI launched PRO-C™ in late 1997. It rapidly became one of our best-selling products. Our customers raved about how effective it was for them if they felt like they were “coming down with something” (like a cold, flu, virus, infection, etc.). Greater skin elasticity greatly helped pregnant women avoid stretch marks and episiotomies. Today, we highly recommend its use together with our other Foundational Supplements to ensure optimal health and anti-aging effects.

THE PRO-C™ SUPER ANTIOXIDANT FORMULA

PRO-C™ super antioxidant formula is extremely synergistic, especially in so far as it increases the body’s ability to quench free radicals in its aqueous (i.e., water-based) compartments. Because antioxidants may become free radicals themselves after they have done their job, the body has developed an elaborate system for recovery of oxidized antioxidants.

 

Dr. Lester Packer was the primary researcher investigating the synergistic character of antioxidants. He made this statement in his interview with Dr. Richard Passwater after publication of Packer’s The Antioxidant Miracle (1999):

[The major theme of] The Antioxidant Miracle is that antioxidants work in a coordinated manner. They interact with one another, and this interaction, which we like to call the antioxidant network, is very important to the overall antioxidant defense that we possess. The key members of the antioxidant network are vitamin E and vitamin C, but there are other participants in this network. These are thiol antioxidants, antioxidants that contain sulfur groups in the body. Glutathione perhaps is the best known of these, but there are other sulfur-containing antioxidants that also are very important.”

Dr. Packer continues:

“This whole antioxidant network works like an orchestra depending on individuals who have, of course, different complements of antioxidants depending upon their nutritional regimens and the individuality of their own body metabolisms. The idea behind having a network of antioxidants is that if one antioxidant happens to be deficient the others can compensate and still keep the antioxidant defense system strong.”

The following diagram shows some of the relationships in the antioxidant network and how they support each other.

Lester Packer antioxidant network diagram Figure 1 – Dr. Packer’s Antioxidant Network

We see, for example, reduced glutathione (GSH) has the ability to reduce oxidized Vitamin C back to its unoxidized state. Vitamin C reduces oxidized Vitamin E back to its unoxidized state, and both reduces glutathione and spares it for other important functions, including detoxification and immune enhancement.

Many polyphenols (e.g., oligomeric proanthocyanidins (OPCs), anthocyanidins and catechins) found in red grape and green tea extracts spare Vitamin C and glutathione in the body, as well as operate as powerful antioxidants, anti-inflammatories, and connective tissue strengtheners.

grapes grape extract antioxidant

Grapes provide antioxidant nutrients such as polyphenols, OPCs, anthocyans, and resveratrol.

R-Lipoic Acid (see abstracts below) operates as an antioxidant both in its oxidized and reduced states, reduces the oxidized forms of both Vitamin E and Vitamin C, and and has been shown to enhance glutathione levels. Because several of these substances are able to protect Vitamin E contained in cell membranes, this combination also has a significant beneficial effect on the fat soluble antioxidant status of the body!

The nutrients in PRO-C have been carefully selected and balanced to provide optimal effects, especially as related to free radical protection, detoxification, immune system enhancement, connective tissue strengthening, and reduction of inflammation. PRO-C therefore provides outstanding nutritional support in a wide variety of conditions of poor health, as well as acts to support and maintain a state of health and well-being.

It the last several years the research results on Nrf2 activators have become well known and products developed that take advantage of these nutrients. For details see our blog article Natural Phytochemical Nrf2 Activators for Chemoprevention. Researchers have been studying specifically how enzyme-activating substances such as OPCs and anthocyans activate a transcription factor known as Nrf2 that causes the body to endogenously produce higher levels of a wide variety of protective enzymes including superoxide dismutase (SOD), catalase, and glutathione peroxidase.

Although we did not know about Nrf2 activators in 1997 when we formulated PRO-C, we have subsequently learned that four of the ingredients in the formula have powerful Nrf2 activity. These include grape seed extract, green tea extract, NAC, and r-lipoic acid. With this knowledge, we now understand that PRO-C provides both powerful external antioxidants (with extremely high ORAC5.0 values) that support redox cycles within the body, but also provides ingredients that allow the body to endogenously produce powerful protective enzymes for even greater free-radical protection and health.

PRO-C™ ANTIOXIDANT FORMULA INGREDIENTS

PRO-C contains buffered vitamin C (in the form of powdered calcium, magnesium, and zinc ascorbates), high-potency grape extract (from grape pulp, skins, and seeds), green tea extract (with>95% polyphenols and >45% EGCG), reduced glutathione, N-Acetyl-L-Cysteine (NAC), R-lipoic acid, coenzyme forms of vitamin B2 (R5P) and vitamin B6 (P5P), and selenium.

Below we will discuss each ingredient and show some of the research that confirms its effectiveness.

VITAMIN C

Vitamin C typically is called l-ascorbic acid or ascorbate and is an essential nutrient for humans and other animal species. The term “vitamin C” refers to a number of vitamins that have vitamin C activity in animals, including ascorbic acid and its salts (e.g., magnesium ascorbate, calcium ascorbate, sodium ascorbate, etc.), and some oxidized forms such as dehydroascorbate and semidehydroascorbate.

Vitamin C is known to perform many critical functions within the body involving detoxification, tissue building, immune enhancement, pain control, and controlling or killing pathogenic organisms. It is also known to be helpful for wound and bone healing, healthy skin and eyes, fighting infections, stress control, toxic exposure, and repairing damaged tissue of all types. For much more information on the many benefits of Vitamin C see our blog article Vitamin C – An Amazing Nutrient.

Below are two abstracts that show some of the beneficial effects of Vitamin C when used with other network antioxidants:

ABSTRACT 1:
Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration.
Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T, Vina J
In: Am J Physiol (1992 Nov) 263(5 Pt 2):R992-5

We have studied the effect of exhaustive concentric physical exercise on glutathione redox status and the possible relationship between blood glutathione oxidation and blood lactate and pyruvate levels. Levels of oxidized glutathione (GSSG) in blood increase after exhaustive concentric physical exercise in trained humans. GSSG levels were 72% higher immediately after exercise than at rest. They returned to normal values 1 h after exercise. Blood reduced glutathione (GSH) levels did not change significantly after the exercise. We have found a linear relationship between GSSG-to-GSH and lactate-to-pyruvate ratios in human blood before, during, and after exhaustive exercise. In rats, physical exercise also caused an increase in blood GSSG levels that were 200% higher after physical exercise than at rest. GSH levels did not change significantly. Thus, both in rats and humans, exhaustive physical exercise causes a change in glutathione redox status in blood. We have also found that antioxidant administration, i.e., oral vitamin C, N-acetyl-L- cysteine, or glutathione, is effective in preventing oxidation of the blood glutathione pool after physical exercise in rats.

ABSTRACT 2:
The effect of glutathione and vitamins A, C, and E on acute skin flap survival.

Hayden RE, Paniello RC, Yeung CS, Bello SL, Dawson SM
In: Laryngoscope (1987 Oct) 97(10):1176-9

Vitamins A, C, and E act as antioxidants and as free radical scavengers in biological systems. Glutathione is involved in several reactions in vitamin metabolism and also plays an important role in cell membrane protection against lipid peroxidation by free radicals. We sought to use these natural defense mechanisms against oxygen free radicals formed during reperfusion of ischemic skin flaps. An acute axial random skin flap model was utilized in the rat. Vitamins or glutathione were administered by oral gastric tube or intravenously in the perioperative period, and survival of the flap was measured at 1 week. Glutathione, beta-carotene, ascorbic acid and alpha-D- tocopherol showed mean flap survival of 84% to 89%, each of which was significantly improved over saline controls (67% p less than .0005). The mechanisms and biochemistry of these vitamins, and their interactions with other vitamins and with glutathione, are discussed, along with clinical implications of free radical scavenging and skin flap survival.

GRAPE EXTRACT

Grape extract (seeds, skin, pulp) contain highly bioavailable bioflavonoid complexes that in research studies have been shown to have powerful antioxidant capability. The Oligomeric Proanthocyanidins (OPCs) in grape seed extract are able to strengthen collagen fibers in aging or damaged connective tissue and can act as a preventative against connective tissue degradation.

Some research indicates that anthocyans, which are found in extracts of grape skin and stems (but not in grape seed extract), can reduce oxidized glutathione while at the same time become reduced themselves. In addition, extracts of grape skin and stems (but not those of grape seed extract) contain a material called trans-resveratrol that has been shown to have chemopreventive effects.

Below we have provided some of the abstracts that are included in our broad list of relevant abstracts for PRO-C.

ABSTRACT 3:
Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice.
Bagchi D, Garg A, Krohn RL, Bagchi M, Bagchi DJ, Balmoori J, Stohs SJ
In: Gen Pharmacol (1998 May) 30(5):771-6

1. The comparative protective abilities of a grape seed proanthocyanidin extract (GSPE) (25-100 mg/kg), vitamin C (100 mg/kg), vitamin E succinate (VES) (100 mg/kg) and beta-carotene (50 mg/kg) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lipid peroxidation and DNA fragmentation in the hepatic and brain tissues, as well as production of reactive oxygen species by peritoneal macrophages, were assessed. 2. Treatment of mice with GSPE (100 mg/kg), vitamin C, VES and beta-carotene decreased TPA-induced production of reactive oxygen species, as evidenced by decreases in the chemiluminescence response in peritoneal macrophages by approximately 70%, 18%, 47% and 16%, respectively, and cytochrome c reduction by approximately 65%, 15%, 37% and 19%, respectively, compared with controls. 3. GSPE, vitamin C, VES and beta-carotene decreased TPA-induced DNA fragmentation by approximately 47%, 10%, 30% and 11%, respectively, in the hepatic tissues, and 50%, 14%, 31% and 11%, respectively, in the brain tissues, at the doses that were used. Similar results were observed with respect to lipid peroxidation in hepatic mitochondria and microsomes and in brain homogenates. 4. GSPE exhibited a dose-dependent inhibition of TPA- induced lipid peroxidation and DNA fragmentation in liver and brain, as well as a dose-dependent inhibition of TPA-induced reactive oxygen species production in peritoneal macrophages. 5. GSPE and other antioxidants provided significant protection against TPA-induced oxidative damage, with GSPE providing better protection than did other antioxidants at the doses that were employed.

ABSTRACT 4:
Clinical and capillaroscopic evaluation of chronic uncomplicated venous insufficiency with procyanidins extracted from vitis vinifera
Costantini A, De Bernardi T, Gotti A
In: Minerva Cardioangiol (1999 Jan-Feb) 47(1-2):39-46

BACKGROUND: The pharmacological treatment of non-complicated chronic venous insufficiency is a current and well-debated topic. The introduction of new products with action on the venous system, improved knowledge on the physiopathology of venous insufficiency and the possibility provided by new analytical instruments, have given new impulse to the consolidation of the clinical value of phlebotonics in this indication. METHODS: In light of this, 24 patients with non-complicated chronic venous insufficiency were treated with oral administration of Oligomeric Proanthocyanidins (Pycnogenols-OPC) 100 mg/day. To evaluate the therapeutic efficacy of the treatment, an instrumental evaluation by optical probe capillaroscope was employed in addition to the traditional subjective clinical parameters: swelling, itching, heaviness and pain. The videocapillaroscope examination was performed at the lower third of the leg and the first toe. Edema in the capillaroscopic field, the number of observable capillaries and the capillary dilatation were the parameter chosen to evaluate the efficacy of treatment. All patients completed the study with no reports of adverse events during the period of observation. RESULTS: The results obtained show a positive clinical response (improved or absent symptoms) in over 80% of patients, with significant improvement of symptoms already evident after the first 10 days of treatment. The mechanism of action of the OPCs explains the rapid reduction of the swelling of the lower limbs and correlated with this are the other evaluable symptoms: heaviness and itching. Particularly striking results were observed for itching and pain which completely disappeared during the course of therapy in 80% and 53% of the patients respectively. Noteworthy is the good correlation between the clinical and instrumental data, with improvement in a total of 70% of patients. CONCLUSIONS: The results obtained in the course of this clinical experience, with evident improvement already during the first weeks of treatment, the absence of adverse events added to the benefit of a once-a-day administration, justify the use of OPC in the treatment of non-complicated chronic venous insufficiency.

ABSTRACT 5:
Polymeric procyanidin fraction from defatted grape seeds protects HepG2 cells against oxidative stress by inducing phase II enzymes via Nrf2 activation.
Younghwa Kim, Youngmin Choi, Hyeonmi Ham, Heon-Sang Jeong, Junsoo Lee
Kim, Y., Choi, Y., Ham, H. et al. Food Sci Biotechnol (2013) 22: 485. https://doi.org/10.1007/s10068-013-0105-x

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor that regulates antioxidant response element (ARE)-driven phase II detoxification enzymes. In this study, induction of phase II enzymes via Nrf2/ARE activation in the cytoprotective effect of crude polyphenol extract (CPE), oligomeric procyanidin fraction (OPF), and polymeric procyanidin fraction (PPF) from defatted grape seeds in HepG2 cells was evaluated. Among these treatments, the treatment with PPF significantly increased Nrf2 protein expression in the nuclear fraction. Treating the samples increased heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) protein expression in a dose-dependent manner, and PPF significantly increased the levels of phase II enzymes. Cellular generation of reactive oxygen species (ROS) were effectively reduced by PPF. These results suggest that pretreatment with PPF shows a cytoprotective effect by inhibiting ROS production and inducing HO-1 and NQO1 expression via Nrf2 activation in HepG2 cells.

GREEN TEA EXTRACT

Green tea extract is obtained from the unfermented leaves of Camellia sinensis for which numerous biological activities have been reported including: antimutagenic, antibacterial, hypocholesterolemic, antioxidant, and protective against tumorigenesis. Below we have selected a few of the many abstracts we have on file showing the benefit of green tea extract.

Green tea antioxidant polyphenols catechins

Green tea leaves are high in antioxidant polyphenols and catechins.

ABSTRACT 6:
Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention.
Khan SG, Katiyar SK, Agarwal R, Mukhtar H
In: Cancer Res (1992 Jul 15) 52(14):4050-2

Following the oral feeding of a polyphenolic fraction isolated from green tea (GTP) in drinking water, an increase in the activities of antioxidant and phase II enzymes in skin, small bowel, liver, and lung of female SKH-1 hairless mice was observed. GTP feeding (0.2%, w/v) to mice for 30 days significantly increased the activities of glutathione peroxidase, catalase, and quinone reductase in small bowel, liver, and lungs, and glutathione S-transferase in small bowel and liver. GTP feeding to mice also resulted in considerable enhancement of glutathione reductase activity in liver. In general, the increase in antioxidant and phase II enzyme activities was more pronounced in lung and small bowel as compared to liver and skin. The significance of these results can be implicated in relation to the cancer chemopreventive effects of GTP against the induction of tumors in various target organs.

ABSTRACT 7:
INHIBITORY EFFECT OF SIX GREEN TEA CATECHINS AND CAFFEINE ON THE GROWTH OF FOUR SELECTED HUMAN TUMOR CELL LINES.
In: Anticancer Drugs (1996 Jun) 7(4):461-8
Institutional address: Department of Pharmacology and Toxicology College of Pharmacy University of Arizona Tucson 85721 USA.

Green tea is an aqueous infusion of dried unfermented leaves of Camellia sinensis (family Theaceae) from which numerous biological activities have been reported including antimutagenic, antibacterial, hypocholesterolemic, antioxidant, antitumor and cancer preventive activities. From the aqueous-alcoholic extract of green tea leaves, six compounds (+)-gallocatechin (GC), (-)-epicatechin (EC), (-)- epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)- epigallocatechin gallate (EGCG) and caffeine, were isolated and purified. Together with (+)-catechin, these compounds were tested against each of four human tumor cells lines (MCF-7 breast carcinoma, HT-29 colon carcinoma, A-427 lung carcinoma and UACC-375 melanoma). The three most potent green tea components against all four tumor cell lines were EGCG, GC and EGC. EGCG was the most potent of the seven green tea components against three out of the four cell lines (i.e. MCF-7 breast cancer, HT-29 colon cancer and UACC-375 melanoma). On the basis of these extensive in vitro studies, it would be of considerable interest to evaluate all three of these components in comparative preclinical in vivo animal tumor model systems before final decisions are made concerning which of these potential chemopreventive drugs should be taken into broad clinical trials.

GLUTATHIONE AND N-ACETYL-L-CYSTEINE (NAC)

Glutathione and NAC (a major precursor of glutathione) both provide important protection against toxins and free radicals, and can strengthen the immune system. Glutathione is considered to be one of the most important protective substances in the human body with almost 60% of liver detoxification accounted for by this key substance. In addition, glutathione is one of the most potent anti-viral substances known.

Some research has indicated that glutathione may not be able to enter easily into certain types of cells, but NAC is able to enter these cells and be converted into glutathione once inside the cell. Thus, the combination of glutathione and NAC appear to be more potent than either alone.

Below we provide some of the key abstracts we have on file regarding NAC and glutathione.

ABSTRACT 8
GSH rescue by N-acetylcysteine.
Ruffmann R Wendel A
In: Klin Wochenschr (1991 Nov 15) 69(18):857-62

Reduced glutathione (GSH) is the main intracellular low molecular weight thiol. GSH acts as a nucleophilic scavenger and as an enzyme-catalyzed antioxidant in the event of electrophilic/oxidative tissue injury. Therefore, GSH has a major role as a protector of biological structures and functions. GSH depletion has been recognized as a hazardous condition during paracetamol intoxication. Conversely, GSH rescue, meaning recovery of the protective potential of GSH by early administration of N-acetylcysteine (NAC), has been found to be life-saving. Lack of GSH and electrophilic/oxidative injury have been identified among the causes of the adult respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and the acquired immunodeficiency syndrome (AIDS). Experimental and early clinical data (in ARDS) point to the role of NAC in the treatment of these conditions. Recently, orally given NAC has been shown to enhance the levels of GSH in the liver, in plasma, and notably in the bronchoalveolar lavage fluid. Rescue of GSH through NAC needs to be appreciated as an independent treatment modality for an array of different disease, all of which have one feature in common: pathogenetically relevant loss of GSH.

ABSTRACT 9
Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine.
Bridgeman MM Marsden M MacNee W Flenley DC Ryle AP
In: Thorax (1991 Jan) 46(1):39-42

N-acetylcysteine (600 mg/day) was given to patients by mouth for five days before bronchoscopy and bronchoalveolar lavage to determine whether N-acetylcysteine could increase the concentrations of the antioxidant reduced glutathione in plasma and bronchoalveolar lavage fluid. Bronchoalveolar lavage was performed 1-3 hours (group 2, n = 9) and 16-20 hours (group 3, n = 10) after the last dose of N-acetylcysteine and the values were compared with those in a control group receiving no N-acetylcysteine (group 1, n = 8). N-Acetylcysteine was not detected in plasma or lavage fluid. Plasma concentrations of cysteine, the main metabolite of N-acetylcysteine and a precursor of reduced glutathione, were greater in the groups receiving treatment (groups 2 and 3) than in group 1. Cysteine concentrations in lavage fluid were similar in the three groups. Concentrations of reduced glutathione were greater in both plasma and lavage fluid in group 2 than in group 1. These data suggest that N-acetylcysteine given by mouth is rapidly deacetylated to cysteine, with resulting increases in the concentrations of cysteine in plasma and of reduced glutathione in plasma and the airways, which thus temporarily increase the antioxidant capacity of the lung.

R-LIPOIC ACID / ALPHA-LIPOIC ACID

R-Lipoic Acid is normally made at low levels in the human body, where it functions primarily as an important metabolic nutrient in the conversion of pyruvic acid into acetyl coenzyme A. As such, it plays a crucial role in the metabolism of both fats and carbohydrates into energy. In addition, r-lipoic acid functions as an extremely powerful antioxidant capable of trapping many different types of free radicals in the body.

Because it is both water and fat soluble, lipoic acid is able to operate in a broader range of body tissues than most other antioxidants. Its small size allows lipoic acid to enter areas of the body not easily accessible to many other substances; this allows lipoic acid, for example, to enter the cell nucleus and prevent free-radical damage to DNA.

Because it is such a powerful antioxidant and can easily function as such in both a reduced and oxidized state, lipoic acid is able to protect other important antioxidants such as glutathione, Vitamin E, and Vitamin C. R-lipoic acid is also able to chelate heavy metals such as lead, cadmium, mercury, free iron, and free copper out of the body.

Below we provide relevant scientific abstracts from our database regarding R-Lipoic acid.

ABSTRACT 10:
Alpha-Lipoic acid as a biological antioxidant.
Packer L Witt EH Tritschler HJ
In: Free Radic Biol Med (1995 Aug) 19(2):227-50

alpha-Lipoic acid, which plays an essential role in mitochondrial dehydrogenase reactions, has recently gained considerable attention as an antioxidant. Lipoate, or its reduced form, dihydrolipoate, reacts with reactive oxygen species such as superoxide radicals, hydroxyl radicals, hypochlorous acid, peroxyl radicals, and singlet oxygen. It also protects membranes by interacting with vitamin C and glutathione, which may in turn recycle vitamin E. In addition to its antioxidant activities, dihydrolipoate may exert prooxidant actions through reduction of iron. alpha-Lipoic acid administration has been shown to be beneficial in a number of oxidative stress models such as ischemia-reperfusion injury, diabetes (both alpha-lipoic acid and dihydrolipoic acid exhibit hydrophobic binding to proteins such as albumin, which can prevent glycation reactions), cataract formation, HIV activation, neurodegeneration, and radiation injury. Furthermore, lipoate can function as a redox regulator of proteins such as myoglobin, prolactin, thioredoxin and NF-kappa B transcription factor. We review the properties of lipoate in terms of (1) reactions with reactive oxygen species; (2) interactions with other antioxidants; (3) beneficial effects in oxidative stress models or clinical conditions.

ABSTRACT 11:
Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity.
Zhang J, Zhou X, Wu W, Wang J, Xie H, Wu Z.
In: Environ Toxicol Pharmacol. 2017 Apr;51:30-37. doi: 10.1016/j.etap.2017.02.022. Epub 2017 Feb 27.

Alpha-lipoic acid (α-LA) is an important antioxidant that is capable of regenerating other antioxidants, such as glutathione (GSH). However, the underlying molecular mechanism by which α-LA regenerates GSH remains poorly understood. The current study aimed to investigate whether α-LA regenerates GSH by activation of Nrf2 to alleviate cadmium-induced cytotoxicity in HepG2 cells. In the present study, we found that cadmium induced cell death by depletion of GSH through inactivation of Nrf2. Addition of α-LA to cadmium-treated cells reactivated Nrf2 and regenerated GSH through elevating the Nrf2-downstream genes γ-glutamate-cysteine ligase (γ-GCL) and GR, both of which are key enzymes for GSH synthesis. However, blocking Nrf2 with brusatol in the cells co-treated with α-LA and cadmium reduced the mRNA and the protein levels of γ-GCL and GR, thus suppressed GSH regeneration by α-LA. Our results indicated that α-LA activated Nrf2 signaling pathway, which upregulated the transcription of the enzymes for GSH synthesis and therefore GSH contents to alleviate cadmium-induced cytotoxicity in HepG2 cells.

SELENIUM

Selenium has been shown by clinical research to be a key mineral in the body’s defenses against free radicals and has been shown to be a major factor in reducing the symptoms of HIV infections and in the prevention of tumors. Selenium is used in conjunction with glutathione to form the powerful enzyme glutathione peroxidase that is responsible for detoxification of peroxides formed during the process of aerobic metabolism in humans and other animals.

ABSTRACT 12
Serum selenium concentrations in rheumatoid arthritis.
In: Ann Rheum Dis (1991 Jun) 50(6):376-8

O’Dell JR, Lemley-Gillespie S, Palmer WR, Weaver AL, Moore GF, Klassen LW

Selenium is a trace element and an essential part of the enzyme glutathione peroxidase, which protects cells from oxidative damage. Selenium has been shown to have antiproliferative, anti-inflammatory, antiviral, and immune altering effects. Serum selenium concentrations in 101 patients with seropositive rheumatoid arthritis were found to be significantly lower than those in 29 normal, healthy controls (mean (SD) 148 (42) v 160 (25) micrograms/l) and also lower than those in eight patients with fibrositis (148 (42) v 166 (25) micrograms/l). It is speculated that serum selenium concentrations may modulate the effect of viral or other infections in subjects with the appropriate genetic background and in this way enhance the development or progression of rheumatoid arthritis.

ABSTRACT 13
Studies on selenium in top athletes.
Dragan I, Ploesteanu E, Cristea E, Mohora M, Dinu V, Troescu VS
In: Physiologie (1988 Oct-Dec) 25(4):187-90

The authors performed a controlled trial in 18 top athletes (9 weight lifters and 9 rowers, girls) in order to make evident some chronic and acute effects (antioxidant) of selenium. Nonprotein–SH (essential glutathione), lipid peroxides (MDA-malondialdehyde), glucose-6-phosphate dehydrogenases (G-6-PDH) and fructose-1,6- diphosphate aldolase in serum, have been recorded initially on basal conditions, after 3 weeks of treatment (100 micrograms/day selenium or placebo) and again after 3 weeks of treatment, also on basal conditions, when crossing over the groups (between a free interval of 10 days). In another trial we registered these parameters on basal conditions and after two hours of hard training accompanied by a per oral administration of 150 micrograms selenium (respectively placebo). The results show significant changes under selenium treatment of the peroxides, G-6-PDH and light changes, not significant of the nonprotein–SH, changes which could suggest an antioxidant effect of this element.

VITAMINS B2 and B6 IN COENZYME FORMS

Vitamin B2 as coenzyme riboflavin-5-phosphate is a key vitamin that supports the regeneration of glutathione (via glutathione reductase). Vitamin B6 as coenzyme pyridoxal-5-phosphate is a key vitamin that supports the ability of glutathione to combine with toxic substances (via glutathione transferase) in the process of eliminating them from the body. They are especially effective in their coenzyme forms which allows them to be directly utilized by the body starting in the intestinal tract.

MAGNESIUM, CALCIUM, AND ZINC

Magnesium, zinc, and calcium synergistically work with (and enhance the effects of) the other ingredients in PRO-C. Minerals are especially needed as active components of enzymes that drive metabolic activity. For example, magnesium is required in the functioning of more than 325 types of enzymes.

PRO-C™ SUPER ANTIOXIDANT FORMULA BENEFITS

HIGHLY EFFECTIVE VITAMIN C FORMULA PLUS ANTIOXIDANTS. A complete vitamin C formula, a powerful antioxidant Formula, and Nrf2 activator combined in a single advanced supplement!

POWERFUL, SYNERGISTIC FREE-RADICAL QUENCHING FORMULA. PRO-C™ components work together to quench free radicals in your body. Vitamin C enables grape seed extract to function more effectively, and conversely grape seed extract potentiates vitamin C. Green tea extract boosts ORAC (Oxygen Radical Absorbance Capacity) value.

PROVIDES SIGNIFICANT AMOUNTS OF POWERFUL NRF2 ACTIVATORS (from Grape Extract, Green Tea Extract, NAC, and R-Lipoic Acid) that stimulate the production of the body’s own protective antioxidants including superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase.

SUPERIOR, BUFFERED (NON-ACIDIC) FORM OF VITAMIN C. Mineral Ascorbates never acidify your body, keeping you pH balanced. Staying alkaline is an important element in maintaining a healthy body.

RAPID ASSIMILATION. Capsule form ensures rapid uptake and assimilation in the body. You may also empty capsule contents into water, food, or directly Into mouth, if desired. Good, mildly tart taste!

COMPOSITION OF PRO-C™ SUPER ANTIOXIDANT FORMULA

One (1) vegetarian capsule of PRO-C provides the following percentages of the Daily Value:

NUTRIENT AMOUNT % Daily Value
Vitamin C (from mineral ascorbates) 500 mg 833%
BioVin® Grape Extract 30 mg *
Green Tea Extract 30 mg *
Calcium (from calcium ascorbate) 23 mg 2.3%
Magnesium (from magnesium ascorbate) 23 mg 5.7%
L-Glutathione (reduced) 20 mg *
N-Acetyl-L-Cysteine (NAC) 15 mg *
R-Lipoic Acid 5 mg *
Zinc (from zinc ascorbate) 2 mg 13%
Vitamin B2 (from riboflavin-5′-phosphate) 1 mg 118%
Vitamin B6 (from pyridoxal-5′-phosphate) 1 mg 50%
Selenium (from l-selenomethionine) 10 mcg *

* No established Daily Value

DIRECTIONS: As a dietary supplement take 1–3 capsules or more daily in divided doses (i.e., spread out over the day), or as recommended by a health care professional. It initially may be useful to take up to 6 capsules per day in divided doses for one week. The contents of the capsule may be emptied into juice or food, as needed.

INGREDIENTS: PRO-C™ SUPER ANTIOXIDANT FORMULA contains only the highest-quality USP grade magnesium ascorbate, USP grade calcium ascorbate, BioVin® grape extract (greater than 75% polyphenols, 93% OPC, greater than 3.5% anthocyanidins from grape pulp, skins, and seeds, and a small amount of trans resveratrol), green tea extract (95% min. polyphenols and 45% min. EGCG), l-glutathione (reduced), USP grade n-acetyl-l-cysteine, USP grade zinc ascorbate, r-(+)-lipoic acid, riboflavin-5′-phosphate, pyridoxal-5′-phosphate, l-selenomethionine, the smallest amounts of microcrystalline cellulose and silica in a vegetarian capsule.

PRO-C™ does not contain wheat, rye, oats, corn antigen, barley, gluten, soy, egg, dairy, yeast, sugar, sulfates, phosphates (other than coenzyme forms), fats, chlorides, GMOs, wax, preservatives, colorings, or artificial flavorings.

Click here to order PRO-C™.

SOURCES & RESOURCES

BOOKS

The Antioxidant Miracle. Lester Packer, PhD, and Carol Coleman. New York: John Wiley and Sons, 1999.

How to Live Longer and Feel Better. Dr. Linus Pauling. Corvallis, OR: Oregon State University Press, 2006.

ARTICLES

Review of Scientific Research on Oligomeric Proanthocyanidins (OPC)” (rev. 2017) by Hank Liers, PhD

“Vitamin C – An Amazing Nutrient” by Hank Liers, PhD

PRO-C™ and Ultimate Protector™ – Comparison by Hank Liers, PhD

“Antioxidant Cocktail Update: Part 1: The Take Home Message is to Use Antioxidant Supplements”
(An interview of Dr. Lester Packer by Richard A. Passwater, PhD, Whole Foods Magazine 1999)

ABSTRACTS

PRO-C™ / Vitamin C Abstracts

Catechin Abstracts

N-Acetyl-L-Cysteine (NAC) Abstracts

Lipoic Acid Abstracts

WEBSITES

Orthomolecular.org
(Therapeutic Nutrition Based Upon Biochemical Individuality)

PRODUCTS

PRO-C™Super Antioxidant Formula

Ultimate Protector™Nrf2 Activator Formula

OPC-C™

HPDI Vitamin C Products

0

WONDERS OF MOLECULAR HYDROGEN

Fred Liers PhD molecular hydrogen H2I drink hydrogen-infused water. You should, too. Why? Because the age of hydrogen is here. Molecular hydrogen, that is. We now know that molecular hydrogen has therapeutic potential for nearly every organ in the human body, as well as for 150 different human disease models! And it’s extremely safe.

MOLECULAR HYDROGEN: BACKGROUND

Molecular hydrogen, also known as “diatomic hydrogen,” is a colorless, tasteless, and odorless gas.

Elemental hydrogen (H) is the most abundant element in the universe constituting 75% of its mass. Yet, it is absent on earth in its monoatomic form, being present in water, and inorganic and organic compounds. Molecular hydrogen is found in the earth’s atmosphere at less than one part per million.

molecular hydrogen H2 water

Hydrogen-infused water is a simple means to consume molecular hydrogen.

The science regarding benefits to health of molecular hydrogen (H2) has advanced rapidly in recent years thanks to the pioneering efforts of research scientists around the globe.

Now hydrogen science is moving quickly beyond theory to practical applications. Moreover, new products exist allowing medical professionals and consumers to leverage the health benefits of hydrogen.

For decades, diatomic molecular hydrogen was generally considered an “inert” gas. That is perhaps the primary reason that molecular hydrogen has been recognized as a therapeutic molecule only recently.

Indeed, science has known about the health benefits of molecular hydrogen as early as 1798. Yet, as noted, for most of modern history the belief persisted that hydrogen was inert in the body. It was only in the late 20th century (ca. 1975) that it gained the attention of medical researchers, and only in the past 10 years has evidence for the health effects of molecular hydrogen gained critical mass in the scientific literature.

There are now more than 500 peer-reviewed articles demonstrating the therapeutic potential of hydrogen for nearly every organ in the human body, as well as in 150 different human disease models, according to the Molecular Hydrogen Foundation.

HEALTH BENEFITS OF MOLECULAR HYDROGEN (H2)

• Molecular hydrogen reduces oxidative stress as a selective antioxidant and by maintaining homeostatic levels of glutathione, superoxide dismutase, catalase,  and other free-radical scavenging nutrients.

• The antioxidant capacities of molecular hydrogen are such that it is beneficial for persistent and acute oxidative stress.

• Acute oxidative stress arises from a multitude of causes, including inflammation, cardiac or cerebral infarction, organ transplantation, heavy exercise, cessation of operative bleeding, and many other causes.

• Persistent oxidative stress relates to reactive oxygen species (ROS) generated in the body throughout life. For example, during exercise, exposure to pollutants and toxins or UV light, as well as physical and psychological stresses, and the aging process itself. As aerobic organisms, we generate ROS when breathing consumes oxygen.

• Molecular hydrogen is effective against hydroxyl radicals (OH). The hydroxyl radical is the radical species that causes much of the oxidative damage in the body. While vitamin C, glutathione, and certain plant-based antioxidants are somewhat effective against this radical, there is no Nrf2-induced enzyme that effectively quenches the hydroxl radical.

• This positions molecular hydrogen as a uniquely effective antioxidant against the hydroxyl radical. Notably, when molecular hydrogen quenches the hydroxyl radical, it produces water, which is non-toxic in the body.

• Beyond this, molecular hydrogen, like other gaseous signaling molecules such as NO, CO, H2S, appears to exhibit cell signal-modulating activity that confers it with anti-inflammatory, anti-obesity, anti-allergy, and many other benefits.

MOLECULAR HYDROGEN MEDICINE

The scientific literature discusses the use of molecular hydrogen for many clinical applications, including the following:

• METABOLIC SYNDROME including diabetes, hyperlipidemia, arteriosclerosis, hypertension, and obesity

• ISCHEMIA / REPERFUSION injuries including cerebral and myocardial infarctions, organ transplants, post-cardiac arrest

• NEUROPROTECTION including applications for dementia, Parkinson’s disease, depression, and anesthesia

• INFLAMMATION including applications for polymicrobial sepsis, rheumatoid arthritis, wound healing, and bowel diseases

• MITOCHONDRIAL DISEASES

• HEMODIALYSIS / VENTILATION

• AGING including cognitive decline

• EXERCISE including applications for fatigue, lactic acid, recovery, and oxidative stress related to heavy exercise

SIDE EFFECTS OF CANCER THERAPIES including radiotherapy and chemotherapy

• MANY OTHER BENEFITS

athlete molecular hydrogen performance race

Athletes benefit from molecular hydrogen. You can, too.

HOW MOLECULAR HYDROGEN WORKS

According to the Molecular Hydrogen Foundation, there are three ways molecular hydrogen exerts positive health effects.

1.  Molecular hydrogen easily diffuses into subcellular compartments where it scavenges cytotoxic oxygen radicals, thereby protecting DNA, RNA, and proteins against oxidative stress.

2.  Molecular hydrogen triggers activation or upregulation of additional antioxidant enzymes (e.g., glutathione, superoxide dismutase, catalase, and others) and/or cytoprotective proteins of the body.

3.  Molecular hydrogen may be a novel signaling molecule that alters cell signaling, cell metabolism, and gene expression. This may explain its apparent anti-inflammatory, anti-allergic, and anti-apoptotic (or anti-cell death) effects.

MOLECULAR HYDROGEN IS SAFE

Molecular hydrogen exhibits great safety, and it is regarded as safe for use in the body. It is shown no toxicity even in high concentrations.

Safety standards are already established for high concentrations of molecular hydrogen for inhalation because high-pressure H2 gas is used in deep-water diving gas mixtures to prevent decompression sickness.

Notably, H2 gas combusts only at temperatures higher than 527 °C, and it explodes by chain reaction with oxygen (O2) only in the range of Hconcentration (4–75%, vol/vol).

Molecular hydrogen can be used for medical applications safely by several ingestion methods including inhalation of 1–4% hydrogen gas, which exhibits great effectiveness.

All these factors mean that molecular hydrogen is safe, easy-to-use, and effective for therapeutic purposes.

molecular hydrogen H2 water

Hydrogen-infused water is safe, easy-to-consume, and cost effective.

USING MOLECULAR HYDROGEN

Methods for consuming molecular hydrogen include inhalation, oral ingestion of hydrogen-infused water, injection of hydrogen saline, and direct diffusion (eye drops, baths, cosmetics, etc.).

An advantage of inhaled H2 gas is that is acts rapidly. In this respect, may be suitable for defense against acute oxidative stress.

It has been shown that inhalation of 3–4% hydrogen (H2) gas reaches a plateau at approximately 10–20 μM in the arterial and venous blood in about 20 minutes. This is shown not to affect any physiological parameters (e.g., blood pressure), suggesting no adverse effects.

According to the Molecular Hydrogen Foundation, the consensus is that drinking H2-rich water is the easiest, and often the most effective, method for obtaining molecular hydrogen although it does not provide as many hydrogen molecules to the body as other methods.

Some studies show consuming H2-infused water to be more effective than inhalation or increasing intestinal H2 production via lactulose administration.

Another advantage of drinking hydrogen infused water is that it allows gastric induction of ghrelin, which is mediated via activation of beta 1 adrenergic receptors.

Above all, drinking hydrogen-infused water is easy to do, and convenient as you can drink it at home or while traveling.

HYDROGEN-INFUSED WATER

Inhalation of molecular hydrogen gas may be impractical for continuous H2 consumption in daily life. In contrast, solubilized H2 (hydrogen-infused water) is a portable, easily administered, and safe means to ingest H2.

H2 can be dissolved in water up to 0.8 mM (1.6 mg/L) under atmospheric pressure at room temperature without changing pH.

Hwater can be made by several methods: infusing H2 gas into water under pressure, electrolyzing water to producing H2, and reacting magnesium metal or its hydride with water.

Notably, H2 penetrates glass or plastic walls of vessels in a short time, yet aluminum containers retain hydrogen gas for a long time.

Water ionizers produce hydrogen gas via electrolysis. This method produces hydrogen concentrations from less than 0.05 ppm to more than 2.5 ppm. Typically 0.1 to 0.7 ppm hydrogen is produced, yet most companies manufacturing water ionizers neither know the concentration produced nor understand the significance of hydrogen for health.

In this regard, depending upon the production method much of the water containing molecular hydrogen exhibits a negative oxygen reduction potential (ORP). Yet, ORP is only a general indication of hydrogen production and is not a measurement of its concentration.

A second method of producing hydrogen-rich water by electrolysis is by infusion. In this method, hydrogen is directly infused into filtered water within a machine.

Another convenient method to generate molecular hydrogen is to add alkali-earth metals to water. Magnesium metal in commonly used for this purpose. This method allows for the production of high concentrations of molecular hydrogen that are generally near saturation (1.6 ppm), and therefore less water needs to be consumed by individuals drinking it.

Magnesium sticks and tablets/capsules are available (some of which are placed in water and others that can be consumed directly) that rapidly produce 2–4 ppm molecular hydrogen concentration. Like electrolysis, adding metals to water also increased the pH of water because they reduce the concentration of H+ ions.

Other methods exist that can produce supersaturated concentrations of molecular hydrogen with or without alteration of water pH. Advantages of these methods include having to drink a fraction of the amount of water in order to obtain an equal amount of molecular hydrogen.

Drinking water containing molecular hydrogen is probably the easiest and most cost-effective means for most persons to obtain hydrogen.

man drinks water infused with molecular hydrogen

Hydrogen-infused water can be consumed using tablets, prepared H2 beverages, or ionized water.

MOLECULAR HYDROGEN FROM YOUR MICROBIOME

Certain types bacteria in the intestinal tract produce hydrogen gas from non-digestible fibers, which may explain how fiber-rich diets reduce inflammation, and exert cardiovascular and other health benefits.

Diets low in dietary fiber from fruits and vegetables, or a decrease in microbiome diversity could potentially reduce production of molecular hydrogen. This could exert adverse effects on health.

The presence (or absence) of a diverse and robust microbiome may be one of the most significant factors in terms of how much hydrogen can be generated in the body. Most people today do not create the levels of molecular hydrogen in their digestive tracts that humans in earlier time periods generated largely because due to modern diets and less than optimal microbiome health.

Factors that influence or reduce microbiome health and diversity include antibiotic use, imbalanced diet, lack of certain fiber-rich vegetables in the diet, and consumption of herbicides, pesticides, and GMOs (that include glyphosate) that harm microbial populations and cause “leaky gut”.

As knowledge increases regarding ways we can support a healthy microbiome, the biological significance of hydrogen historically produced in our digestive tracts will be better understood.

BENEFIT TODAY FROM MOLECULAR HYDROGEN

The clinical applications of molecular hydrogen are impressive. One of the great advantages of molecular hydrogen infused water is that  it is easy to consume it, or make it in your own home or wherever you happen to be.

HPDI now sells a tablet hydrogen product from Purative known as Active H2.

Active H2 is a unique, patent-pending combination of all-natural minerals used to generate molecular hydrogen and electron-rich potential (-ORP). This distinguishes it from existing hydrogen formulas and electrolysis (water ionizers).

Active H2 is easy to use.  Simply place one tablet of in a 1/2 liter (16 oz) container of pure water (filled to the top) and close tightly. Wait at least 5–10 minutes for it to completely disintegrate (fizz), and then drink.

A one pint glass mason jar works well as a container for this purpose. However, you can use up to one liter (about 32 ounces) of water in a container, so a quart mason jar also works well. Consume the hydrogen-infused water ideally at least 30 minutes before food.

Active H2 formula consists of a proprietary blend of pure magnesium, malic acid, fumaric acid, and maltose that synergistically act to generate molecular hydrogen and electron-rich potential (-ORP).

Active H2 is the only all-natural add-in tablet providing molecular hydrogen in the amount of greater than 1.8 ppm, That is, one tablet typically generates molecular hydrogen in the concentration of about 2 ppm.

There are other molecular hydrogen products, including tablets, sticks, and pre-infused bottled products like H2Bev. H2Bev provides about 1.2–1.5 ppm of molecular hydrogen and comes in a 12 oz coated aluminum container for excellent H2 retention.

MOLECULAR HYDROGEN SUMMARY

Molecular hydrogen sits in the unique position of providing significant, wide-ranging benefits for health with an unmatched ease-of-use, and at relatively low cost for what it delivers.

We highly recommend the use of molecular hydrogen for its health benefits and for therapeutic applications. This includes the consumption of hydrogen-infused water whether from prepared H2 beverages, water ionizers, or highly effective Active H2 tablets.

Below we include important scientific abstracts you may find helpful in understanding the benefits and applications of molecular hydrogen.

 

SCIENTIFIC STUDIES ON MOLECULAR HYDROGEN

Beneficial biological effects and the underlying mechanisms of molecular hydrogen – comprehensive review of 321 original articles

From: http://www.ncbi.nlm.nih.gov/pubmed/26483953

Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4% is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.

Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine

From: http://www.ncbi.nlm.nih.gov/pubmed/24769081

Abstract
Molecular hydrogen (H2) has been accepted to be an inert and nonfunctional molecule in our body. We have turned this concept by demonstrating that H2 reacts with strong oxidants such as hydroxyl radical in cells, and proposed its potential for preventive and therapeutic applications. H2 has a number of advantages exhibiting extensive effects: H2 rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect signaling reactive oxygen species; therefore, there should be no or little adverse effects of H2. There are several methods to ingest or consume H2; inhaling H2 gas, drinking H2-dissolved water (H2-water), injecting H2-dissolved saline (H2-saline), taking an H2 bath, or dropping H2-saline into the eyes. The numerous publications on its biological and medical benefits revealed that H2 reduces oxidative stress not only by direct reactions with strong oxidants, but also indirectly by regulating various gene expressions. Moreover, by regulating the gene expressions, H2 functions as an anti-inflammatory and anti-apoptotic, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under investigation. Since most drugs specifically act to their targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has promising potential for clinical use against many diseases.

Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury.

From: http://www.ncbi.nlm.nih.gov/pubmed/25251220

Abstract
Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.

The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance

From: http://www.ncbi.nlm.nih.gov/pubmed/23680032

Abstract
Studies on molecular hydrogen have evolved tremendously from its humble beginnings and have continued to change throughout the years. Hydrogen is extremely unique since it has the capability to act at the cellular level. Hydrogen is qualified to cross the blood brain barrier, to enter the mitochondria, and even has the ability to translocate to the nucleus under certain conditions. Once in these ideal locations of the cell, previous studies have shown that hydrogen exerts antioxidant, anti-apoptotic, anti-inflammatory, and cytoprotective properties that are beneficial to the cell. Hydrogen is most commonly applied as a gas, water, saline, and can be applied in a variety of other mediums. There are also few side effects involving hydrogen, thus making hydrogen a perfect medical gas candidate for the convention of novel therapeutic strategies against cardiovascular, cerebrovascular, cancer, metabolic, and respiratory diseases and disorders. Although hydrogen appears to be faultless at times, there still are several deficiencies or snares that need to be investigated by future studies. This review article seeks to delve and comprehensively analyze the research and experiments that alludes to molecular hydrogen being a novel therapeutic treatment that medicine desperately needs.

Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases

From: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377272/

Abstract
Effects of molecular hydrogen on various diseases have been documented for 63 disease models and human diseases in the past four and a half years. Most studies have been performed on rodents including two models of Parkinson’s disease and three models of Alzheimer’s disease. Prominent effects are observed especially in oxidative stress-mediated diseases including neonatal cerebral hypoxia; Parkinson’s disease; ischemia/reperfusion of spinal cord, heart, lung, liver, kidney, and intestine; transplantation of lung, heart, kidney, and intestine. Six human diseases have been studied to date: diabetes mellitus type 2, metabolic syndrome, hemodialysis, inflammatory and mitochondrial myopathies, brain stem infarction, and radiation-induced adverse effects. Two enigmas, however, remain to be solved. First, no dose-response effect is observed. Rodents and humans are able to take a small amount of hydrogen by drinking hydrogen-rich water, but marked effects are observed. Second, intestinal bacteria in humans and rodents produce a large amount of hydrogen, but an addition of a small amount of hydrogen exhibits marked effects. Further studies are required to elucidate molecular bases of prominent hydrogen effects and to determine the optimal frequency, amount, and method of hydrogen administration for each human disease.

Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases

From: http://www.ncbi.nlm.nih.gov/pubmed/21621588

Abstract

BACKGROUND:
Mitochondria are the major source of oxidative stress. Acute oxidative stress causes serious damage to tissues, and persistent oxidative stress is one of the causes of many common diseases, cancer and the aging process; however, there has been little success in developing an effective antioxidant with no side effect. We have reported that molecular hydrogen has potential as an effective antioxidant for medical applications [Ohsawa et al., Nat. Med. 13 (2007) 688-694].

SCOPE OF REVIEW:
We review the recent progress toward therapeutic and preventive applications of hydrogen. Since we published the first paper in Nature Medicine, effects of hydrogen have been reported in more than 38 diseases, physiological states and clinical tests in leading biological/medical journals. Based on this cumulative knowledge, the beneficial biological effects of hydrogen have been confirmed. There are several ways to intake or consume hydrogen, including inhaling hydrogen gas, drinking hydrogen-dissolved water, taking a hydrogen bath, injecting hydrogen-dissolved saline, dropping hydrogen-dissolved saline into the eyes, and increasing the production of intestinal hydrogen by bacteria. Hydrogen has many advantages for therapeutic and preventive applications, and shows not only anti-oxidative stress effects, but also has various anti-inflammatory and anti-allergic effects. Preliminary clinical trials show that drinking hydrogen-dissolved water seems to improve the pathology of mitochondrial disorders.

MAJOR CONCLUSIONS:
Hydrogen has biological benefits toward preventive and therapeutic applications; however, the molecular mechanisms underlying the marked effects of small amounts of hydrogen remain elusive.

GENERAL SIGNIFICANCE:
Hydrogen is a novel antioxidant with great potential for actual medical applications. This article is part of a Special Issue entitled Biochemistry of Mitochondria.

Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications

From: http://www.ncbi.nlm.nih.gov/pubmed/21736547

Abstract
Persistent oxidative stress is one of the major causes of most lifestyle-related diseases, cancer and the aging process. Acute oxidative stress directly causes serious damage to tissues. Despite the clinical importance of oxidative damage, antioxidants have been of limited therapeutic success. We have proposed that molecular hydrogen (H(2)) has potential as a “novel” antioxidant in preventive and therapeutic applications [Ohsawa et al., Nat Med. 2007: 13; 688-94]. H(2) has a number of advantages as a potential antioxidant: H(2) rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect reactive oxygen species (ROS) that function in cell signaling, thereby, there should be little adverse effects of consuming H(2). There are several methods to ingest or consume H(2), including inhaling hydrogen gas, drinking H(2)-dissolved water (hydrogen water), taking a hydrogen bath, injecting H(2)- dissolved saline (hydrogen saline), dropping hydrogen saline onto the eye, and increasing the production of intestinal H(2) by bacteria. Since the publication of the first H(2) paper in Nature Medicine in 2007, the biological effects of H(2) have been confirmed by the publication of more than 38 diseases, physiological states and clinical tests in leading biological/medical journals, and several groups have started clinical examinations. Moreover, H(2) shows not only effects against oxidative stress, but also various anti-inflammatory and antiallergic effects. H(2) regulates various gene expressions and protein-phosphorylations, though the molecular mechanisms underlying the marked effects of very small amounts of H(2) remain elusive.

Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals

From: http://www.ncbi.nlm.nih.gov/pubmed/17486089

Abstract
Acute oxidative stress induced by ischemia-reperfusion or inflammation causes serious damage to tissues, and persistent oxidative stress is accepted as one of the causes of many common diseases including cancer. We show here that hydrogen (H(2)) has potential as an antioxidant in preventive and therapeutic applications. We induced acute oxidative stress in cultured cells by three independent methods. H(2) selectively reduced the hydroxyl radical, the most cytotoxic of reactive oxygen species (ROS), and effectively protected cells; however, H(2) did not react with other ROS, which possess physiological roles. We used an acute rat model in which oxidative stress damage was induced in the brain by focal ischemia and reperfusion. The inhalation of H(2) gas markedly suppressed brain injury by buffering the effects of oxidative stress. Thus H(2) can be used as an effective antioxidant therapy; owing to its ability to rapidly diffuse across membranes, it can reach and react with cytotoxic ROS and thus protect against oxidative damage.

ADDITIONAL RESOURCES

MOLECULAR HYDROGEN (H2) AT FOREFRONT OF HEALTH RESEARCH
by Hank Liers, PhD (from the HPDI blog)

ACTIVE H2 (tablet product)

Molecular Hydrogen Foundation (MHF)

Contact Us:

You can reach HPDI by calling 1-800-228-4265, email support(at)IntegratedHealth.com, or visit the retail website: www.IntegratedHealth.com

Health care professionals and retailers can apply for wholesale account, which includes access to the HPDI reseller website: www.HealthProductsDistributors.com