0

GOT POTASSIUM?

Fred Liers PhD potassium minerals pH AdjustGot potassium? You heard me right. Po-tass-i-um.

Well, no—you probably don’t get enough—and you’re not alone. Fewer than 2% of people do.

Experts say 4,700 milligrams (4.7 grams) of potassium is the minimum daily intake required for health and to reduce risk of chronic disease.

Yet, the National Health and Nutrition Examination Survey (NHANES) reports the average potassium intake for Americans is 2,640 milligrams (2.6 g) daily. This low intake remains unchanged over decades! Most people get less than half the amount of potassium needed to meet “adequate” or minimum levels.

Given essential roles played by potassium in the body, and the known health benefits it confers, almost everyone — including you — can benefit from additional potassium. From where will it come?

That is to say, will the average person really meet recommended potassium intake from diet alone? I’m a huge advocate for increasing intake of dietary potassium, but long-term evidence suggests the answer is “no.” Supplementing with certain forms of potassium can be an effective adjunct to dietary intake.

It therefore can be highly beneficial to take a potassium-containing formula like pH Adjust, which provides potassium bicarbonate that boosts potassium levels and powerfully alkalinizes the body.

Bananas provide potassium (400–800 mg), but not if you don’t eat them!

THE “NEGLECTED” MINERAL?

For years, a parade of minerals—calcium, magnesium, zinc, iodine, and yes, sodium—have drawn attention from health professionals, consumers, and the media. Whither potassium?

Yet despite compelling scientific studies, articles, and books, potassium has not “caught on” among doctors, consumers, or health aficionados. Nevertheless, knowledgeable health professionals and a small number of health-consious individuals have known of its importance for decades and longer.

Potassium has become known as the “forgotten” or “neglected” mineral. It’s time to revisit what we thought we knew…or never knew. It’s time to recognize potassium as “first among equals” in the pantheon of macrominerals.

If you think you know potassium, prepare to think again.

POTASSIUM FACTS

A review from Nutrition 101…and some things you may not know:

The symbol for potassium is “K” in the periodic table. It is one of seven essential macrominerals including calcium, magnesium, phosphorus, sodium, chloride, and sulfur.

POTASSIUM BASICS:

• Regulates fluid balance in the body by means of the sodium-potassium pump (Na+/K+ pump)

• Controls electrical activity of cardiac muscle (heart) and other muscles

• Counters the effects of sodium and thereby maintains proper blood pressure

• Maintains proper acid-base balance in the body

BENEFITS OF HIGH (ADEQUATE) POTASSIUM:

• Decreases risk of dying from all causes (20%)

• Reduces risk of stroke

• Lowers blood pressure

• Protects against loss of muscle mass

• Preserves bone mineral density

• Reduces formation of kidney stones

POTASSIUM – NEEDED MORE THAN EVER?

Beyond the benefits you may take for granted that are provided by the mineral you don’t get enough of…there are many reasons why potassium is more important than ever.

One major reason potassium is needed more than ever: sodium.

Sodium is the essential macromineral no one seems to be lacking. Just the opposite! When people talk about sodium, it is usually about how to avoid it. Sodium is blamed for hypertension and adverse cardiovascular health. What is the connection between sodium and potassium?

It all starts at the level of the cell with the “sodium-potassium pump” (or N+/K+ pump). The sodium-potassium pump is responsible for keeping sodium out of cells and keeping potassium in. But it also a carrier for nutrients going into cells, and it is involved in the energy production.

The typical modern diet —low in potassium and high in sodium (and sugar)—is a major problem for cells because it compromises the function of the sodium-potassium pump. Optimal function of the sodium-potassium pump requires not only increasing potassium intake, but also reducing sodium intake.

Potassium Sodium Pump cell

The sodium-potassium pump expels 3 sodium ions and brings in 2 potassium ions per cycle

SODIUM – POTASSIUM RELATIONSHIP:

• Humans once consumed high levels of potassium (12 g or higher) and low levels of sodium (<2 g) daily. That 6:1 ratio in favor of potassium has radically shifted to a 2:1 or even 4:1 ratio in favor of sodium. Salt is everywhere in the food supply. The potassium to sodium ratio (K/Na ratio) is called the “K Factor.”

• High “K Factor”: During evolutionary history, humans consumed 5–10+ times more potassium than sodium. Because the prehistoric diet contained little sodium, the body developed means for conserving it through resorption. Conversely, our potassium supplies were higher, and therefore the body developed no system for conserving it—it is absorbed, filtered by the kidneys, and eliminated.

• Cellular imbalance between potassium and sodium can cause strokes and other damage without increasing blood pressure (K Factor xxix). An exclusive focus on decreasing blood pressure (whether through diet or drugs) that fails to take potassium into consideration may not produce desired results.

• The sodium-potassium (Na+/K+) pump is an important pump that exists in cells. Its job is to keep sodium levels low in cells (pump out sodium and wastes) and pump in potassium, glucose, and other nutrients. Sufficient potassium is critical for this all-important pump that keeps us healthy.

• When sodium (salt) levels are high and potassium levels are low, the pump does not function efficiently. Cells cannot prevent sodium from entering, causing them to swell from osmotic pressure, and causing metabolic blockage.

• The sodium-potassium pump uses sodium as a “carrier” to bring in potassium, glucose, and other nutrients. For every glucose molecule, two sodium molecules are pumped into a cell. With high sodium intakes, cells become overloaded with sodium, and the pump works far less efficiently.

• Low potassium creates greater imbalance preventing the pump from excreting sodium, and also preventing nutrients from entering cells. The cell produces less energy and enters a type of metabolic stasis.

• Studies show the greatest decreases in blood pressure occur not only when sodium intake decreases, but when potassium intake simultaneously increases.

The role of potassium in the sodium-potassium pump has implications for nearly every function in the human body. And potassium does a lot more.

MANY HEALTH BENEFITS

Potassium provides many benefits. These include known benefits for reducing hypertension, stroke, osteoporosis, and kidney stones, as well as supporting cardiovascular health, and stabilizing blood glucose. Many of potassium’s benefits relate to its role in the sodium-potassium pump. Other benefits relate to different aspects of potassium.

POTASSIUM ALKALINIZES YOUR BODY

Among the most significant features of potassium is its ability to alkalinize the body. Potassium neutralizes acids by itself and especially when combined with minerals such as bicarbonates.

I have recently posted several articles that discuss potassium’s role in keeping the body alkaline. Specifically, how consuming more potassium-rich fruits and vegetables remains the most important means for maintaining alkaline conditions in the body.

Potassium contributes mightily to acid-alkaline balance essential for health by boosting alkalinity. pH levels in the range of 7.35–7.45 provide many benefits. Because modern diets and lifestyles tend to produce acidic conditions (acidosis) in the body, it is important to recognize potassium’s role as “ultimate alkalinizer.”

Known benefits of ideal pH levels (slightly alkaline) include:

• Optimal function of enzymes
• Proper mineral retention, including electrolyte reserves
• Better tissue oxygenation
• Beneficial effects on microbiome

fruits vegetables potassium alkalinization

Consuming more potassium-rich fruits and vegetables can help maintain proper pH in the body.

The alkaline-forming minerals include potassium, magnesium, calcium, and sodium. They work together to keep you alkaline—all are important. Yet, in terms of what in your diet most drives alkalinity, potassium is the king. In fact, certain measures of pH indicate that alkalinity is a function of potassium intake. This means potassium intake most effectively creates alkaline conditions.

High dietary intake of potassium-rich, alkaline-forming fruits and vegetables (especially leafy green vegetables) and vegetable juices is the best way of supporting proper pH. This is a proven means for balancing the effects of acid-forming foods like meats, and most grains and starches (simple carbohydrates).

Known factors producing overly acidic conditions in the body include consuming meats, sugar, processed foods, and simple carbohydrates like wheat, corn, rice, and most pastas and breads.

IT’S REALLY ABOUT DIET?

TOO LITTLE POTASSIUM…TOO MUCH SODIUM

The human story behind potassium begins with dietary intake. Once upon a time, we “got plenty” of potassium in our diets. Now, not so much.

Indeed, humans have a long history of high potassium intake from foods. Our paleolithic ancestors ate a lot of vegetables, fruits, and nuts—all of which are high in potassium. This helped balance their intake of nutrients from animal foods, which are typically lower in potassium.

During the rise of agriculture (20,000–30,000 years ago) and settled communities, grains became a significant portion of our diet. Yet, grains contain relatively low levels of potassium.

In addition, salt was added to foods in larger quantities as a preservative and taste enhancer. A long, slow slide toward decreasing potassium levels— and simultaneously increasing sodium levels—was set in motion.

Sodium is an essential mineral for health—it is one of the alkalinizing minerals. But historically, humans obtained 5–10+ times as much potassium as sodium. We have now “successfully” reversed potassium preponderance by consuming 2–4 times as much sodium as potassium. This causes lots of problems, and is one of the major elements creating dysfunction in sodium-potassium pumps in cells (see above).

In our modern age, and especially since the later decades of the the 20th century, intake of fresh vegetables and fruits has fallen dramatically. And so has the dietary intake of potassium.

The 20th century witnessed an unprecedented and dramatic rise in consumption of processed, packaged, and “fast” foods — most of which are low in potassium and high in sodium.

Beyond the rise of processed foods, there are declines in nutrients (including potassium) in foods due to steadily poorer soil quality on farmland. And adverse impacts on nutrients in food crops relating to the rise of industrial agriculture—with its dependency on chemicals—and failure to replenish soils.

DIET REMAINS BEST TO INCREASE POTASSIUM INTAKE

Potassium remains high in vegetables and fruits, including dried fruits. And vegetable broths. The best solution to low intake of potassium in the diet is simply consuming higher levels of vegetables and fruits, especially those that are fresh and organic.

spinach leafy greens potassium alkalinity

Got spinach? It provides 800 mg potassium per cup!

Leafy greens (raw or cooked) are among the very best sources. Beet greens contain 1,300 mg of potassium per cup and spinach about 800 mg per cup.

Fresh carrot juice is my favorite providing nearly 700 mg per cup. Even comfort foods like baked potatoes (or sweet potatoes) provide high levels (1,000 mg) with skin. Avocado lovers rejoice, as there are 400–500 mg per avocado.

Beans and nuts are good sources, too. Fruits like bananas (400 mg), cantaloupe (350 mg), and even fruit juices like orange juice (650 mg) are significant sources. Among animal foods, fish, chicken, and pork are highest in potassium.

Nutritionists frequently suggest a 80–20 rule: simply consume 80% alkaline-forming foods to 20% acid-forming foods.

With this simple 80–20 formula, nearly everyone can achieve high—or at least adequate—potassium intake through their dietary choices.

The question is: Will people CHOOSE high-potassium foods? Do you?

SOLUTIONS FOR INCREASING POTASSIUM AND REDUCING SODIUM

You can point a person to high-potassium foods, but you can’t make them eat them. Despite exhortations from all sides for greater consumption of vegetables, fruits, nuts, and other high-potassium foods, “potassium sufficiency” isn’t the reality for most people. Potassium intake has been steady for decades.

Regarding sodium, it is just as easy (and important) for most people to decrease sodium in the diet as it is to increase potassium intake. Reduce use of salt. Choose low-sodium options when possible. Sodium is now on the radar as a mineral that promotes hypertension, so low-sodium options are increasingly available.

But like eating more fruits and vegetables, getting more exercise—and other things we know we “should” do—reducing sodium requires a conscious effort. The first part is awareness on the part of the individual. That leads to greater responsibility.

sodium salt shaker potassium

Too much sodium and insufficient potassium in the diet describes modern life.

I also believe manufacturers, restaurants, and the food industry in general should voluntarily limit the amount of sodium they put in foods. That would go a long way toward making it easier to reduce salt.

Coming back to potassium, an interesting fact is that based on US research, Finland in the 1990s replaced their salt shakers with potassium shakers. It’s true. And among other benefits, the incidence of strokes and heart attacks decreased by 60%.

Much can be done by individuals to improve their lives by increasing their potassium intake. Unless and until people eat enough high-potassium foods (and/or the US replaces its salt shakers with potassium shakers—which actually would help solve two problems), another viable option is potassium supplements.

POTASSIUM SUPPLEMENTS

For individuals who do not (or will not) consume sufficient potassium in their diets—this includes the vast majority of people—potassium supplementation can be beneficial.

Even for those who often consume adequate potassium, but sometimes fall short, supplementation is a useful option because it allows for increased potassium intake during times when they need more of it. And who doesn’t?

There are various potassium supplements, typically either capsules or alternate “salts” comprised partly or wholly of potassium bicarbonate. This form of potassium found naturally in fruits and vegetables (versus potassium chloride), and therefore is considered safe. Even when taken in amounts beyond normal recommended daily values, excesses will typically be excreted.

A few caveats. Most nutritional supplements only provide small amounts (100 mg) due to government rules created to avert “hyperalkemia,” defined as too much potassium in the blood. Hyperalkemia can be caused by acute or chronic kidney failure, so if you suffer from kidney failure, please leave potassium supplements alone.

Hyperalkemia can also be caused by medications, such as angiotensin-converting enzyme (ACE) inhibitors (taken for lowering high blood pressure, ironically), non-steroidal anti-inflammatory drugs (NSAIDS), and blood thinners like heparin. It may also relate to alcoholism, diabetes (type 1), or excessive use of potassium supplements.

The “normal” range of potassium in blood is 3.6–4.8 milliequivalents per liter (mEq/L).

On the reverse side: while most people get less than ideal amounts of potassium in their diets, deficiencies that would qualify as too little potassium (“hypoalkemia”) are not common. (Symptoms of hypoalkemia can include irregular heartbeat, muscle weakness, cramping, mood changes, nausea, and vomiting. Severe deficiencies may lead to muscle paralysis and abnormal heart rhythms.)

Given that most people do not obtain sufficient potassium, eating more fruits and vegetables and perhaps taking a high-quality potassium supplement will help the average person. That is, most people benefit from more potassium—not less—which they can get from diet and/or supplements.

pH ADJUST & POTASSIUM

HPDI recently launched pH Adjust, which is probably the world’s most sophisticated alkalinizing formula. pH Adjust is not a potassium supplement, per se. Yet, it provides easily assimilated potassium as part of a synergistic formula (including other important macrominerals) that is exceptionally well designed for increasing pH levels in the body.

pH Adjust potassium bicarbonate magnesium carbonate

pH ADJUST provides potassium and sodium bicarbonates and magnesium carbonate for alkalinity.

pH Adjust is already popular because many people are overly acidic due to dietary and lifestyle choices, including—but not limited to—not consuming enough vegetables and fruits and over-consuming meats, grains, and other acid-forming foods.

pH Adjust is an excellent formula for those interested in safely and rapidly increasing their pH to overcome acidosis, and creating alkaline conditions in the body.

One gram (1/4 teaspoon) of pH Adjust provides 141.7 mg of potassium from potassium bicarbonate and potassium glycinate. This means that one teaspoon — which is the amount I take daily — gives me 567 mg (.567 g) of potassium. That is not a huge amount of potassium, perhaps as much as you would obtain from mid-sized banana. However, if you consider that pH Adjust is a dietary supplement, which in conjunction with improved diet (i.e., consuming more potassium-rich foods) can make a difference in your potassium intake.

And for the many individuals whose potassium intake is less than 2.6 g — recall that 2.6 g is the AVERAGE intake — a 1/2 gram increase in potassium can make a big difference (a 20% boost!) in terms of improving total intake.

Then consider the “healthy” person whose potassium intake may hover around 4 g, which is above average, but less than the suggested 4.7 g intake level. One teaspoon of pH Adjust will move them into the range where they will meet— or get much closer to—the recommended daily intake.

pH ADJUST: MINERALS FOR ALKALINITY

Taking one teaspoon of pH Adjust daily not only helps boost potassium intake, but represents a HUGE move toward being alkaline, which is a major benefit for health, as I wrote in my last blog article.

Equally important in terms of alkalinizing the body, the bicarbonate form of potassium in pH Adjust is hugely alkaline-forming. That is, while potassium itself neutralizes acids in the body, potassium bicarbonate is substantially more alkalizing because of the tremendous alkaline-forming power of bicarbonate.

That is why HPDI created pH Adjust—to rapidly and effectively create alkaline conditions in the body.

Other significant facts: pH Adjust contains magnesium carbonate and sodium bicarbonate. Magnesium carbonate helps neutralizes stomach acids (hydrochloric acid) and then after it is absorbed (as magnesium ions) it continues to neutralize acids throughout the body. The sodium bicarbonate similarly splits: sodium neutralizes acids and bicarbonates alkalinize the body.

Moreover, it is known that without sufficient magnesium, cells cannot retain potassium. pH Adjust provides a significant amount (105 mg) of magnesium (from carbonate) per 1/4 teaspoon. Think about it—pH Adjust supplies more than 400 mg of easily assimilated magnesium in a single teaspoon! (This means you can reduce or drop your other magnesium supplements.)

pH Adjust provides a 3:1 ratio of potassium to sodium. This ratio is known to be ideal for optimal uptake of potassium.

supplement facts pH Adjust potassium magnesium sodium

pH Adjust provides 141.7 mg potassium and 105 mg magnesium per 1/4 teaspoon serving.

FINAL WORDS

Potassium powers sodium-potassium pumps in your cells and keeps you alkaline. It supports proper blood pressure and cardiovascular function. It balances the effects of sodium and works synergistically with other macrominerals keeping you healthy.

Potassium loves you. Yet, you hardly know potassium—or how deficient you are.

Love potassium like it loves you. Eat more potassium-rich fruits, vegetables, and fresh juices. Take a potassium-containing formula like pH Adjust. Not only will it supply you with easily assimilated potassium, but also powerfully boost your alkalinity.

Eat less salt. For God’s sake, eat less salt. Do all these things. Then it’s likely your poor sodium-potassium pumps will revive themselves. I promise, you will feel it!

 

RESOURCES

BLOG ARTICLES

Alkalinize Rapidly Using pH Adjust

pH Adjust Alkalinizing Formula – New Product!

BOOKS & SCIENTIFIC ARTICLES

The High Blood Pressure Solution by Richard D. Moore, MD, PhD

The K Factor: Reversing and Preventing High Blood Pressure without Drugs by Richard D. Moore, MD, PhD

The XXL Syndrome by Max Rombi, MD

Acid & Alkaline by Herman Aihara

Acid-alkaline balance: role in chronic disease and detoxification
(Altern Ther Health Med, 13(4):62-5)

Potassium Intake of the US Population (PDF)
(NHANES Food Surveys Research Group, USDA)

LIST OF HIGH-POTASSIUM FOODS

Potassium: Health Benefits, Recommended Intake

 

This article is dedicated to the memory of our friend Dr. Victor A. Galunic, who provided HPDI with information, resources, and technical assistance.

0

D-RIBOSE: ENERGIZING SMART SUGAR

Fred Liers PhD riboseAvoiding excess dietary sugars is one of the healthiest things. But there is one sugar that really is good for you. That sugar is D-ribose.

In fact, D-ribose is so healthy for you, it may be the one sugar you won’t want to live without. A little background to this amazing sugar.

D-ribose is a 5-carbon monosaccharide occurring naturally in living cells. D-ribose importantly forms the carbohydrate parts of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). That means d-ribose is the sugar essential for the biological function of all living creatures, including humans.

Supplemental D-ribose is associated with many benefits. These benefits include greater energy, less fatigue, and faster muscle recovery. These benefits relate to the capacities of D-ribose as a total body energizer because it boosts energy production (as ATP) in the body.

For individuals suffering low energy levels associated with chronic fatigue syndrome (CFS), low energy levels, and other problems related to low energy (ATP) production, D-ribose can mean a significantly higher level of energy. In cases of extremely low energy, it can mean the capacity to function more normally.

ribose energy woman power health

D-ribose energizes every cell in our bodies.

Athletes and bodybuilders were among the earliest to recognize D-ribose for purposes of improving performance and recovery times. D-Ribose also exerts anti-anxiety, stress reduction, and potential anti-depressant properties. There is additional evidence suggesting that supraphysiological amounts of ribose may have cardioprotective effects, especially for the ischemic heart.

Supplemental D-ribose usually comes in the form of a sweet, crystalline, water-soluble powder. It is also available in capsules or tablets, including chewable tablets.

Humans synthesize d-ribose from foods, including glucose and various dietary sugars. But there are benefits to supplemental D-ribose. One of the major reasons is the important role of D-ribose in the production of energy (ATP) in human cells.

D-RIBOSE BENEFITS

• GREATER ENERGY (ATP) PRODUCTION

• FASTER RECOVERY

• REDUCED FATIGUE

• IMPROVES ATHLETIC PERFORMANCE

• SUPPORTS MITOCHONDRIAL FUNCTION

• AIDS CHRONIC FATIGUE AND FIBROMYALGIA

• SUSTAINS CARDIAC AND SKELETAL MUSCLE

• BETTERS PHYSIOLOGICAL FUNCTION UNDER ANAEROBIC CONDITIONS

• SUPPORTS LONGEVITY OF BLOOD CELLS

• ANTI-ANXIETY EFFECTS

• STRESS REDUCTION

ribose sugar natural heart energy ATP RNA

D-ribose is heart healthy unlike most dietary sugars (e.g., sucrose).

RIBOSE FOR ENERGY (ATP) PRODUCTION

The body uses D-ribose to generate adenosine triphosphate (ATP).  ATP provides energy for all bodily movements and every chemical reaction in cells. ATP is the source of all energy in the body and it’s constantly broken down and recreated due to the processes of life.

The adenine portion of ATP consists of one molecule of adenine and ribose (i.e., five-carbon sugar). The triphosphate portion of ATP consists of three phosphate molecules. When a phosphate breaks off from ATP, then energy is released. The compound then becomes adenosine diphosphate (ADP), which consists of adenosine and two phosphate molecules. When another phosphate molecule breaks off, it becomes adenosine monophosphate (AMP).

It is well established that ratios of ATP, ADP, and AMP are essential for regulating energy in cells. Under extreme physiological stress (e.g., high-intensity exercise), our cells cannot recreate ATP rapidly enough to supply cells with required energy. Concentrations of ADP and AMP rise causing a reduction in cellular energy. When the body’s rate of ATP use continues exceeding the rate at which it can be generated, cells “lose” nucleotides in order to restore the ratio between ATP, ADP, and AMP.

During anaerobic metabolism, AMP levels can rise within cells, thereby disturbing the ratios of ATP to ADP and AMP. The body can reduce AMP concentrations by degrading AMP to simpler end products resulting in a significant decrease in the adenine nucleotide pool. Under extreme conditions (e.g., prolonged high-intensity exercise or the diminished blood flow to tissues witnessed in ischemia), the adenine nucleotide pool may decrease by 30–50%. These effects can significantly compromise physical performance.

Here is where D-ribose supplementation works to support energy production. Supplemental D-ribose allows the body to bypass relatively slow conversion steps required for recreating the adenosine nucleotide providing critical material for ATP production. That is, D-ribose can increase the speed of nucleotide replacement. This has implications not only for sports performance, but also for general health. D-ribose is especially useful in situations where greater energy may be required, as in low energy, chronic fatigue, fibromyalgia, or combating the effects of aging.

D-RIBOSE RATE-LIMITING SUGAR FOR NUCLEOTIDE SYNTHESIS

One of the most important aspects of D-ribose for health relates to the fact that it is the rate-limiting compound that regulates the activity of the purine nucleotide pathway of adenine nucleotide metabolism. As such, ribose plays a central role not only in the synthesis of ATP, but also of coenzyme-A, flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD), DNA, RNA, and other important cellular constituents.

In fact, D-ribose is the only known compound the body can use for performing this critical metabolic function. Specifically, ribose administration bypasses the slow and rate-limited pentose phosphate pathway to stimulate adenine nucleotide synthesis and salvage in vivo. In addition, it has been shown that de novo adenine nucleotide synthesis in skeletal muscle is rate limited by the availability of ribose.

Specifically, human muscle cells (e.g., heart and skeletal muscle cells) do not rapidly replace lost nucleotides because of the lack of two rate-limiting enzymes in the pentose phosphate pathway metabolizing glucose to ribose-5-phosphate. Ribose itself forms 5-phosphoribosyl-1-pyrophosphate, a rate-limiting compound in nucleotide synthesis. As noted, supplemental D-ribose allow the body to bypass the rate-limited steps of the pentose phosphate pathway, thereby accelerating nucleotide synthesis (and salvage).

STOPPING THE VICIOUS CYCLE OF ENERGY DEPLETION

It should not take a genius to figure out that when energy production is optimized, overall health will improve. Yet, the same principle also applies in reverse. That is, there are many instances in which low energy levels can fuel lower energy levels. For example, when illness, stressors, or other factors deplete large amounts of the body’s supply of energy, they can gradually (or not so gradually) lessen the body’s capacity to produce more by overtaxing the energy production system.

This cascade of reduced energy production can become a vicious cycle in which there are few reserves left to support the body’s need for greater energy. D-Ribose is one of the only nutrients that can reverse the downward spiral in ATP production when demands exceed supply. By feeding the body’s own system for producing energy, and thereby supplying the raw material required to produce it, supplemental D-ribose can helps break the cycle of low energy levels.

fatigue ribose natural sugar energy atp cells

Chronic low energy? D-ribose is required for creating energy for all biological functions.

A ROLE FOR SUPPLEMENTAL D-RIBOSE

To recap the importance of supplemental D-ribose: D-ribose increases the rate at which ATP is generated. This improves exercise performance and allows for faster muscle growth. All this is possible because supplemental ribose helps the body bypass the conversion steps needed to create or re-create adenosine nucleotides.

Because replacing adenine nucleotides normally requires a certain amount of time, providing the body with D-ribose supplementally via diet can reduce rates of healing and repair in muscle cells. That is, supplemental D-ribose can increase the speed at which adenosine nucleotides are replaced by providing raw material for the creation of more ATP. That is how D-ribose improves athletic performance and supports optimal energy production, as well as optimal muscle health.

The significance of the science behind ATP production is that almost everyone can benefit from supplemental D-ribose. Whether you are an athlete requiring rapid repletion of energy, a person suffering from low energy levels or chronic fatigue, or anyone who wishes to improve energy production supporting optimal health.

ribose energizes beautiful athletic girl with colorful balloons jumping on the beach

Fatigued to fantastic: a plentiful supply of D-ribose helps ensure an abundance of energy.

REJUVENATE! SUPERFOODS INCLUDE D-RIBOSE

We at HPDI have focused our efforts on formulating the most effective nutritional supplements and superfoods. When Dr. Hank Liers formulated our original high-RNA Rejuvenate! superfood, he put D-ribose into it. In fact, all of our Rejuvenate! superfoods provide significant amounts of D-ribose.

Rejuvenate! (original greens) provides 1,500 mg D-ribose per serving (one small scoop). Rejuvenate! PLUS provides 1,800 mg per serving (two scoops). Rejuvenate! Berries & Herbs provides 2,000 mg per serving (two scoops).

ribose energy dietary nucleic acids rejuvenate superfoods

All Rejuvenate! superfoods provide high levels of D-Ribose.

A major reason HPDI includes D-ribose in its superfoods–and perhaps the most obvious one–is simply that we formulate unique, high-RNA superfoods to support optimal energy production in the body. D-ribose supports that goal by various means.

D-ribose is the rate-limiting sugar for the uptake and assimilation of dietary nucleic acids (RNA, DNA, nucleotides, and nucleosides). This is because D-ribose is actually the sugar backbone of these nutrients. As such, the body requires D-ribose in order to utilize and create (or recreate) dietary nucleic acids.

For example, nucleotides are the molecular building blocks of DNA and RNA. They are chemical compounds consisting of a heterocyclic base, a 5-carbon sugar (ribose or deoxyribose) and at least one phosphate group. They are the monomers of nucleic acids, and 3 or more can bond together to form a nucleic acid.

Nucleosides are glycosylamines consisting of a base (or nucleobase) to a ribose (or deoxyribose) ring. Some nucleosides are cytidine, adenosine, guanosine, and inosine. When nucleosides are phosphorylated in cells, they produce nucleotides (see above).

Thus, D-ribose plays important roles as an essential part of nucleic acids, nucleotides, and nucleosides; in the production of energy (as ATP); and the synthesis and salvage of nucleotides in the body.

Rejuvenate! superfoods are formulated to provide high levels of nucleic acids. D-ribose helps the body optimize its use of nucleic acids and their constituent components. Having D-ribose in our superfoods not only supports energy production directly, but also allows maximum use of the dietary RNA they are formulated to provide.

Rejuvenate! superfoods provide nutrients that boost energy levels significantly and consistently for optimal health, healing, and wellness. The inclusion of D-ribose importantly supports the powerful nucleic acid nutrition these superfoods offer, as well as supplements the body’s intake and synthesis of D-ribose.

ribose energy rejuvenate plus (500g) RNA nucleic acids doctor hank liers original

REJUVENATE! PLUS provides 1,800 mg of D-ribose per serving.

SUMMARY

D-Ribose of one of the most important natural sugars for life and health. It is one of the few nutrients that can boost energy levels naturally. When taken with other important biological nutrients, including dietary RNA, DNA, nucleotides, and nucleosides, D-ribose is truly a nutritional powerhouse that can support good health and the energy levels required to live life to its fullest. We believe the best way to obtain supplemental D-ribose is to consume Rejuvenate! superfoods.

SOURCES & RESOURCES

REJUVENATE! SUPERFOODS

REJUVENATE! PLUS

REJUVENATE! BERRIES & HERBS

REJUVENATE! ORIGINAL (GREENS)

REJUVENATE! COMPARISON GUIDE

HPDI BLOG ARTICLES

GET RESULTS WITH REJUVENATE SUPERFOODS

9 THINGS TO KNOW ABOUT REJUVENATE! SUPERFOODS

DIETARY RNA FOR ATHLETIC PERFORMANCE

TECHNICAL INFORMATION

Pentose-Phosphate Pathway: Elsevier’s Review of Biochemistry

From Fatigued to Fantastic (excerpt) by Jacob Teitelbaum, MD

D-Ribose technical information (Vista Chemicals)

Enhancing Cardiac Energy with Ribose (LEF)

SCIENTIFIC STUDIES

The Use of D-Ribose in Chronic fatigue syndrome and fibromyalgia (J Altern Complement Med.)

D-Ribose Aids Advanced Ischemic Heart Failure Patients (Int J Cardiol.)

D-Ribose, a Metabolic Substrate for Congestive Heart Failure (Prog Cardiovasc Nurs.)

D-Ribose as a Supplement for Cardiac Energy Metabolism (J Cardiovasc Pharmacol Ther.)

Ribose Accelerates the Repletion of the ATP Pool During Recovery from Reversible Ischemia of the Rat Myocardium (J Mol Cell Cardiol.)

Significance of the 5-phosphoribosyl-1-pyrophosphate pool for cardiac purine and pyrimidine nucleotide synthesis: studies with ribose, adenine, inosine, and orotic acid in rats (Cardiovasc Drugs Ther.)

Stimulation of Myocardial Adenine Nucleotide Biosynthesis by Pentoses and Pentitols (Pflugers Arch.)

The Role of Ribose on Oxidative Stress During Hypoxic Exercise (J. Med. Food)

D-Ribose Benefits Restless Legs Syndrome (J Altern Complement Med.)