0

ESSENTIAL NUTRIENTS – SEVEN ARGUMENTS FOR NUTRITIONAL SUPPLEMENTS

Fred Liers PhD nutrients nutritional supplementsAlmost daily articles, reports, or studies appear claiming nutritional supplements are not effective. The claims vary, but the verdict is always there is little or no scientific evidence proving supplements (or the nutrients in supplements) work. Others assert that people who take supplements have the world’s most expensive urine. This is nonsense! The scientific evidence is clear, available, and it has been for a long time.

Among the many problems with these reports is bashing supplements based on studies using low dose or non-therapeutic levels of nutrients. There is frequently failure to consider the importance of synergy among nutrients. Often there is data manipulation via statistical methods (often in meta-analyses).

Well beyond the question of whether supplements support health are the factors in modern life that create a greater needs for supplementing with important vitamins, minerals, cofactors, and other nutrients.

This month we present “Seven Arguments for Nutritional Supplements.” As the title implies, there are at least seven solid arguments for nutritional supplementation. There are actually a lot more.

To preview these arguments in favor of taking supplements, they are: 1) reduced food quality, 2) nutrient density varies by location, 3) modern lifestyles and stress, 4) environmental pollution, 5) too low RDAs, and 6) promotion of health and delaying of aging, and 7) the human right to correct information.

essential nutrients fatty acids EFA supplement

Essential Fatty Acids (EFA) are one type of essential nutrient required for health.

We at HPDI re-publish articles from the Orthomolecular News Service  (OMNS) because the authors provide much needed truth. Truth the form of correcting the false assumptions of anti-supplement propagandists to clarify the benefits of nutritional supplements. This information can help people be healthier easily and at relatively low cost.

HPDI offers a full line of foundational nutritional supplements, including multivitamins, vitamin C and antioxidant formulas, essential fats, and high-RNA Rejuvenate! superfoods. We also offer nearly 100 other nutritional supplements from single nutrients to condition specific formulas. See our full product overview.

Enjoy this article from the Orthomolecular News Service (OMNS). ~

Seven Arguments for Taking Nutritional Supplements

by Dag Viljen Poleszynski, PhD

(OMNS Sept 12 2018)

One of the most vitamin-restrictive countries in the world is Norway. There, authorities limit potencies to only slightly higher than RDA (Recommended Dietary Allowance) levels for dietary supplements sold outside of pharmacies. The traditional reasoning is that most people receive the nutrients they need from a “balanced diet.” [1]

The authorities are also obsessively concerned that some vitamins and minerals are harmful in high doses. And, since an intake of water-soluble vitamins in excess of needs is excreted in the urine, Norwegian “experts” advise that taking supplements is a waste of money.

Accordingly, the argument goes, the public should be protected not only from possible harm, but also from wasting money on unnecessary nutrients. The official policies on nutritional supplements vary within OECD (Organization for Economic Cooperation and Development) countries. Some are more liberal, while others are even more restrictive.

The official view on the connection between nutrient intake and possible toxicity is illustrated by the Norwegian Food Authority in a graph. [2]

Perceived risk from intake of nutrients. (Source: Expert Group on Vitamins and Minerals. Safe upper limits for Vitamins and Minerals. May 2003: Food Standards Agency, UK.)

The graph illustrates the official view on nutrients, assuming that nutrients function in the same way as pharmaceuticals, which they do not. Supplements of most vitamins, but also minerals and other nutrients, do not have very serious side effects even when taken at very high levels – in contrast with most drugs. [3,4] The fact that most of the chemotherapeutic drugs used against cancer have none or even just marginal effects against most cancers [5], while at the same time cause a lot of serious side effects, is rarely up for discussion.

The idea that nutritional supplements are not safe has a legal underpinning in Norwegian Food Law, which in section 16 prohibits sale of any food which is not safe: “Any food shall be considered not to be safe if it is seen as detrimental to health or not fit for consumption.” [6]

However, the Norwegian authorities do admit that vitamin D supplements are needed during part of the year. [1] Only part of the year? One third of Norway is within the Arctic Circle. Norway has far too little sunshine (especially during winter months) to get adequate levels of vitamin D from UVB radiation on the skin.

The authorities also recommend that pregnant women take folic acid to prevent birth defects, and omega-3-fatty acids may be advisable for those who do not eat fish regularly. Norwegians have a long tradition of giving children cod liver oil, which in a daily tablespoon provides enough vitamin A and D and essential fatty acids to cover basic needs.

Essential and conditionally essential nutrients

There are thousands of dietary supplements on the market, including 40+ essential nutrients alone and in various combinations, i.e. vitamins, minerals, trace elements and fatty acids. However, a number of other nutrients are “conditionally essential”, meaning that the body normally can make these molecules, but some people do not make optimal amounts. Examples are L-carnitine, alpha-lipoic acid, the methyl donor betaine, [7] chondroitin sulfate, coenzyme Q10, choline, amino acids such as tyrosine or arginine, and “essential” sugars normally formed in the body. [8]

Healthy young people normally make sufficient amounts of conditionally essential molecules in the body, although the levels are not always optimal. With inadequate levels of minerals or vitamins, key enzymes in biochemical pathways may not function optimally.

Due to genetic mutations, some enzymes may have increased needs for certain cofactors (vitamins), which can prevent them from functioning optimally.[9] Some enzymes only function normally when supplied with cofactors in greater amounts than normally required.

If supplements of essential nutrients prove insufficient for optimal enzyme function, “conditionally essential” nutrients may be added as part of a comprehensive, therapeutic program.

Some reservations

Parents are advised to become familiar with the literature on essential nutrients, for instance by consulting the Orthomolecular News Service. Children should be given supplements in appropriate doses and in a suitable form. Pills should not be given before children can control the swallowing reflex. Multivitamin powder can be given dissolved in water or juice. Parents should not dose vitamin C so high that a child comes to school or kindergarten with loose bowels or diarrhea.

In high doses, niacin may cause unpleasant side effects such as flushing and itching lasting up to several hours. [10] Although this is not dangerous, it may cause a child to feel unwell and anxious. Starting niacin supplementation with a low dose and gradually increasing it will allow the body to adapt and avoid the niacin flush.

A multivitamin supplement containing moderate amounts of niacin is often adequate until a child is 8-10 years old. For younger children, the dosage should start with only a few tens of milligrams, and not increased to more than 50-100 mg/day. Adults may gradually get used to taking 1,000-1,500 mg/d divided into 3 doses per day.

When it comes to omega-3 fatty acids (omega = ω) such as EPA and DHA, children may be given cod liver oil and served fish and/or other seafood 2-3 times a week. It is important to check the dose of vitamin A supplied, as it can be toxic in high doses, especially for children. One problem with cod liver oil today is that vitamin D has been removed during processing, thus changing the natural ratio of the two vitamins so that we ingest relatively too much of vitamin A. [11]

Higher dosages may be given after having consulted a therapist who has measured the ratio of omega-6 to omega-3 fatty acids in relevant cell membranes (red blood cells). In most industrialized countries, many people get too much of the omega-6 fatty acids, and would therefore benefit from eating more seafood or taking supplements with omega-3 fatty acids derived from organisms low in the food chain (algae, krill).

Flax seeds contain a high level of the essential omega-3 fatty acid alpha-linolenic acid, and freshly ground flaxseed meal or flax oil can be mixed with breakfast cereals or smoothies. Note that it may be advisable to limit eating farmed fish to once per week, since their fodder contains less omega-3 fatty acids than the food eaten by wild fish, and possibly also contains more contaminants. [12] Some researchers even warn against letting children eat too much fish because of the content of environmental toxins. [13,14]

Reasons for high-dose supplements of micronutrients

I have identified a number of arguments in favor of supplementing the modern diet with essential nutrients, here summarized with seven headlines. Most people should consider taking a multivitamin supplement containing vitamins and minerals even if they eat a nutritionally balanced diet.

Additional nutrients may contribute to better health and, in some cases, can be of vital importance in our modern world. The arguments are presented in random order, i.e. the order does not reflect priority.

1. The agricultural revolution has reduced food quality

The transition from an existence as hunter and gatherers to urban agriculture around 10,000 years ago began an epoch when foods were mass-produced but had lower nutritional density, compared with the previous food eaten by our ancestors. The nutritional density in many foods has fallen significantly since human societies transformed from hunter-gatherers into resident farmers. This is especially true in the last 60-70 years after agriculture was changed from small, versatile ecologically driven family farms to large, chemical-based, industrial agriculture. [15]

The reduction of nutritional content in modern crops, compared with older varieties, is well documented. [16] It is a consequence of soil erosion, loss of essential minerals from continual heavy use, combined with breeding of new varieties, which has increased the size and growth rate of plants by increasing the content of sugar and water and decreasing their mineral content compared to ancient species. At the same time, the relative content of other macronutrients (fat, protein/amino acids) and antioxidants may have been reduced.

Reduced nutritional density in many foods, combined with the use of refined “foods” like sugar, white flour and refined oils, places a greater priority on eating the most nutritious foods.

Farm produce grown organically generally has higher levels of essential nutrients such as trace minerals because the soil contains higher levels of trace minerals and the produce grows slower and thus has more time to absorb nutrients from the soil. Examples of nutrient dense foods are sardines, wild salmon, shellfish, eggs, liver, kale, collards and spinach, sea plants (seaweed), garlic, blueberries, and dark chocolate. [17]

2. Nutritional content of food varies with geographical location

Nutritional density varies considerably geographically between different regions, even with the same agricultural methods. This was documented in the United States in 1948 by a researcher at Rutgers University in the so-called Firman Bear report. [18] At that time agriculture was little mechanized, and artificial fertilizers and pesticides were hardly used.

The analysis found large differences in the content of minerals in the same food. The largest variations were found for potassium, sodium, boron and iron in spinach, while the greatest differences in calcium, magnesium and copper content were found in tomatoes.

The soil in areas with relatively low rainfall may in some cases contain an extremely high concentration of minerals, which is reflected in the plants growing there. This was well documented 70 years ago in the book Tomorrow’s Food. [19] The dentist George W. Heard found that the soil in Hereford, Texas, was exceptionally rich in minerals.[20]

Hereford became known as the “town without a toothache” after a newspaper article from January 29, 1942, reported that Hereford had the lowest incidence of tooth decay of any city in the United States. [21] Dr. Heard found that people in Hereford had exceptionally few dental cavities and also that the soil locally was especially rich in minerals. He emphasized that the population in the county ate unprocessed food and was drinking raw milk. [19]

Recent research shows that differences in the content of the selenium in the soil can cause major differences in the concentration of selenium in meat. [22] For instance, since the soil in Finland is poor in selenium, the authorities decided in the early 1980s to add selenate to commercial fertilizers. A survey of selenium status among 108 healthy young people showed an increase in the blood selenium level of about 50 percent after four years. [23]

A similar problem with the level of minerals in the soil exists for the content of magnesium. Often when the soil gets depleted of magnesium from heavy use, this essential mineral is not included in soil amendment with fertilizers. Produce grown in soil with an adequate level of magnesium will contain more magnesium than produce grown in soil deficient in magnesium.

Perhaps as many as 70-80% of the US population is magnesium-deficient, which causes many health problems. [24] Magnesium supplements (chloride, malate or citrate) can provide an adequate level when vegetables grown in soil with adequate magnesium are not available.

3. Stress and the modern lifestyle increase the need for nutrients

Mental stress increases the excretion and hence the need for many nutrients. Among the most important are magnesium and vitamin C, both of which are used by the body in larger quantities during periods of physical and mental stress. [24,25] Compared with our past as hunters and gatherers, today´s stress is often of a more permanent nature. Instead of experiencing occasional situations where we had to fight or flee, many of us live with recurring stress day in and out.

Vitamin C protects the brain and nervous system from damage caused by stress because the synthesis and maintenance of chemical neurotransmitters such as adrenaline and noradrenaline requires adequate levels of vitamin C. [25]

Vitamin C is also needed to repair collagen which is essential for skin, blood vessels, bones and joints, and muscles. When these are damaged by physical stress, extra vitamin C is necessary.

A controlled trial of 91 adults who experienced increased anxiety and stress 2-3 months after an earthquake in New Zealand in 2011 was divided into three groups, two were given a broad spectrum supplement of micronutrients in low or higher doses. [26] The supplements were found to alleviate the experience of stress, with the biggest dose having the biggest effect.

Our sedate, modern lifestyle reduces the need for energy from food, which implies a lower food intake or obesity. Loren Cordain, PhD, and coworkers have estimated that hunter-gatherers had significantly higher energy needs than the typical modern office worker. [27]

A lower energy intake generally reduces the absolute intake of all nutrients, while the need for some nutrients is not always reduced proportionally with energy intake. Overall this suggests that more exercise along with a more nutritious diet, including supplements of essential nutrients and less carbohydrates, will help to prevent obesity and maintain health.

Processing of food reduces its nutritional content, and the finished products are often based on fractions of the original foods. One example is milling grain to make white flour, [1] which has a lower nutritional density than whole grain flour.

The reduction in nutritional value has accelerated since whole foods are now divided into pieces, for example, boneless chicken breast. When meat is injected with saline to increase the volume, the relative level of essential nutrients is reduced. In the United States, many supermarkets in low-income rural and inner city areas have a limited selection of nutrient-dense foods, compared with high-income areas. [28]

4. Environmental pollutants increase the need for nutrients

The need for efficient detoxification and excretion is greatly increased by environmental pollution from the chemical industry, herbicides and pesticides used by industrial agriculture, antibiotic treatment of animals, transport, and plastic packaging. [29]

In our polluted world, the increased toxic load may be compensated for by an increase in nutrients to promote detoxification. One can respond by taking large doses of supplements of essential nutrients, for example, antioxidants vitamin C and E, and an adequate dose of selenium, which help the body detoxify harmful chemicals. Also helpful is regularly taking sauna baths, fasting periodically, and eating an excellent diet that includes generous portions of dark green leafy vegetables and colorful vegetables and fruits. [30]

A recent study predicts that global warming may reduce the nutrient density in many foods worldwide. [31] Atmospheric CO2 is estimated to surpass 550 ppm in the next 30-80 years, leading to larger crops with lower content of protein, iron and zinc per energy unit.

Assuming that diets remain constant, while excluding other climate impacts on food production, the researchers estimated that elevated CO2 could cause an additional 175 million people to be zinc deficient and an additional 122 million people to be protein deficient in 2050. Anemia would increase significantly if crops lose even a small amount of iron. The highest risk regions – South and Southeast Asia, Africa, and the Middle East – are especially vulnerable, since they do not have the means and access to compensate using nutritional supplements.

5. The RDA for essential nutrients is too low

The recommended nutrient reference intake (NRI) has been defined by UK authorities and the EU Food Safety Agency as the dose that is adequate for 95 percent of the population. [32] These authorities have given recommendations for a total of 41 chemical substances, [33] including 13 vitamins, 17 minerals/trace elements, 9 amino acids and two fatty acids. The problem with such guidelines is that when using the same 0.95 fraction for just 16 of the essential nutrients, the fraction of the overall population that has their needs met with the RDA is less than half (0.9516 = 0.44).

Given the above assumption, the proportion of the population having all nutrient needs met falls below 25 percent for 30 nutrients (0.9530 = 0.21). These 25 percent will not necessarily get optimal amounts, just enough so that they probably will have no deficiencies in accordance with established standards. Each individual is different and has different biochemical needs, so we all need different doses of essential nutrients. Many vitamins and minerals can give additional benefit when taken at higher doses.

The need for several essential nutrients increases with age and sickness. This applies, for example, to vitamin C, vitamin D, magnesium, and iron. In 2017 the Norwegian Food Safety Authority proposed to revise the official maximum levels for vitamins and minerals in dietary supplements. [34]

Their proposal introduced four different age categories with separate maximum intakes. Initially, the agencies proposed to revise the daily doses allowed in dietary supplements for folic acid, magnesium, calcium, vitamin C and D. At the same time, maximum rates were temporarily suspended for vitamins A, E, K, thiamine (B1), riboflavin (B2), niacin (B3), pantothenate (B5), pyridoxine (B6), cobalamine (B12), biotin, and for phosphorus, iron, copper, iodine, zinc, manganese, selenium, chromium, molybdenum, sodium, potassium, fluoride, chloride, boron and silicon.

The upper limits for some nutrients may be changed in the future. Unfortunately, Norwegian nutrition “experts” will likely continue to limit allowable doses below those freely available in the US and even Sweden.

6. An optimal nutrient intake promotes health and delays aging

A spokesperson for optimal nutritional intake is the well-known biochemist Bruce Ames, who proposed the “triage theory of nutrients,” in which enzymes responsible for cell maintenance functions evolved to have lower affinity for the essential vitamin and mineral cofactors than the enzymes responsible for short-term survival, to preserve life during times of famine. [35]

Thus, higher levels of vitamins and minerals may delay mitochondrial aging, speed up the repair of large molecules such as DNA and collagen, and generally improve other cellular functions. This is an important rationale for taking higher doses of vitamins and minerals than recommended reference intakes.

Dietary supplements can slow the aging process, in part by reducing the harmful effects of free radicals, known to be involved in many diseases such as cardiovascular disease and cancer. [36]

Naturally occurring hormones and/or supplements of cofactors needed for optimal hormone production in the body can have a significant life-prolonging effect if the body produces less than optimal amounts. [37] This is especially relevant for those with a genetic predisposition for disease.

An optimum intake of all nutrients is difficult to achieve even for those who eat almost exclusively an excellent diet of nutrient dense foods, such as meat and innards, fish, shellfish, fowl, eggs, nuts, mushrooms, and vegetables, berries and nutritious fruits. Some nutrients such as folic acid or carotenoids in vegetables are absorbed better from processed than unprocessed foods.

Although vegetables are often considered to be a good source of vitamins, for example vitamin A from carrots, vitamin A is only found in animal products such as liver, egg yolk, fish cod and cod liver oil. Although eating raw vegetables is helpful for several reasons (vitamin C, fiber, microbiota), carotenoids (alpha/beta-carotene, lutein, lycopene) in vegetables are less well absorbed from raw than cooked food and better absorbed in the presence of added fat. [38,39].

Nutrients in vegetables are better absorbed when finely chewed, graded, or mashed [38], and cooking and grinding meat reduces the energy required to digest it [40] and increases nutrient absorption [41].

Orthomolecular pioneer Abram Hoffer and Orthomolecular News Service Editor Andrew W. Saul suggested this list of daily intakes of vitamins and minerals. [42] The Norwegian 2017 recommendations for adult men and women [43] are given in comparison. Individual needs may vary substantially from person to person and also with health status.

The figures for optimal intake are obtained from the Independent Vitamin Safety Review Panel of physicians, researchers and academics, who concluded:

“People are deceived in believing that they can get all the nutrients they need from a ‘balanced diet’ consisting of processed foods. To achieve an adequate intake of vitamins and minerals, a diet of unprocessed whole foods, along with intelligent use of dietary supplements is more than just a good idea: it is vital.” [44: 55]

A well-known example is vitamin C, which can effectively fight viral infections, prevent or reverse disease caused by bacteria, and help the body detoxify organic and inorganic toxins. [45] Vitamin C also reduces the risk for cancer, strengthens connective tissues (collagen), and counteracts stress by increasing the adrenal´s production of cortisol. The dose required is set according to the body’s need.

Nobel Price Laureate Linus Pauling suggested that an optimal daily intake of vitamin C could vary from at least 250 mg up to 20 grams per day. [46] Because unabsorbed vitamin C attracts water into the gut, some people may experience loose stools, gas and/or diarrhea by ingesting only 1-2 grams at a time, while others with a higher level of stress may tolerate 5-6 grams or more. The dose that causes loose stools is called the “bowel tolerance” for vitamin C. [47] To avoid the laxative effect of high doses, it is best to take vitamin C throughout the day in smaller divided doses.

When the body is stressed by disease, the gut will naturally absorb more vitamin C because the body needs more. To find the optimal dose, the intake should be increased until bowel tolerance is reached. Some people can tolerate more than 100,000 mg/d of vitamin C in divided doses during serious illness without having loose stool.

Liposomal vitamin C bypasses the normal bowel tolerance because it is absorbed directly through cell membranes, so higher doses can be tolerated without diarrhea.

7. A human right to receive correct information

Access to correct information about food and essential nutrients, including knowledge about the importance of food for health is a fundamental human right. Such information should not only provide a summary of the nutrient content of food, but in our opinion should also explain how dietary supplements can counteract deficiencies and prevent and reverse disease caused by nutrient deficiencies.

We should be free to purchase quality-controlled supplements of essential nutrients and to use them to counteract aging and damage from stress as part of a long-term health plan. The right to reject recommendations by doctors for symptomatic treatment with synthetic, some times life-threatening, drugs to alleviate symptoms should be included. [48,49]

I have not found any formulation of such rights from the Norwegian authorities. The role of parents and their right to receive correct health information is addressed in a book by lawyer Anne Kjersti C. Befring, a fellow at the University of Oslo since 2014. [50]

Summary

The use of dietary supplements is widespread. High doses of vitamins are thought to be helpful because they help the body recover from damage and maintain itself long-term. Many vitamins are not harmful in doses even 10 to 100-fold higher than officially recommended.

Some governments warn about possible negative side effects, even including increased mortality from “excessive” intake of certain supplements. However, supplements of essential nutrients have been available for more than 80 years. They are known to be safe, and the observed side effects are generally mild with few exceptions.

It is possible to ingest too much of certain vitamins and minerals (vitamin A, calcium, iron, copper, selenium) which may exacerbate an existing imbalance or lack of another mineral (magnesium, zinc). It is also important to balance intake of fatty acids in the omega-6 and omega-3 series, as most people get too much omega-6 and not enough omega-3.

Small children can be overdosed with adult doses of for example vitamin A or iron, and pills may be dangerous for babies or young children because they can get stuck in the throat. Therefore, I recommend consulting a doctor or nutritionist educated in orthomolecular medicine. Most people are likely to benefit from taking a broad-spectrum multivitamin/mineral supplement as a basic insurance against deficiencies.

Compared to pharmaceutical drugs, supplements of most essential nutrients are quite harmless. However, some supplements may have poor quality, or contain toxic metals such as lead or cadmium. Therefore, it is the duty of our authorities to ensure that potentially hazardous products or supplements of poor quality are not sold, and that consumers are offered fair prices in a free market.

An example where the Norwegian authorities do not follow up such basic duties is that pharmacies demand more than 1,600 Norwegian Kroner (about $190) per kg of vitamin C in powder form, which would cost less than $20 with free competition and no restrictions in permitted doses or outlets.

Those who want to use natural healing methods, such as the use of food and supplements of essential nutrients to prevent or reverse illness, should consult therapists who are qualified to give advice on how natural therapies can help.

I recommend that anyone interested in supplements read the references for this article as well as the archives of the Journal of Orthomolecular Medicine http://orthomolecular.org/library/jom/ and the Orthomolecular Medicine News Service http://orthomolecular.org/resources/omns/index.shtml . Both are free access online.

(Dag Viljen Poleszynski, PhD, is the editor of Helsemagasinet [Health Magazine] https://vof.no/arkiv/ . He has translated and published a large number of OMNS releases in Norwegian.)

 

References

1. National Nutrition Council. Dietary advice to promote public health and prevent chronic disease. Directorate of Health, Oslo January 2011.

2. [Norwegian Food Authority. Nutritional supplements – a situational description.] Oslo 2013. http://www.matportalen.no/kosthold_og_helse/tema/kosttilskudd/article32116.ece/BINARY/Kosttilskudd%20-%20en%20tilstandsbeskrivelse

3. Moore TJ, Cohen MR, Furberg CD. Serious adverse drug events reported to the Food and Drug Administration, 1998-2005. Archives of Internal Medicine 2007; 167: 1752-9. https://www.ncbi.nlm.nih.gov/pubmed/17846394.

4. Gøtzsche PC. Our prescription drugs kill us in large numbers. Polskie Archiwum Medycyny Wewnetrznej 2014; 124: 628-33. http://pamw.pl/en/issue/article/25355584

5. Abel U. [Chemotherapy of advanced carcinomas. A critical inventory] 2nd edition. Stuttgart, Germany: Hippokrates Verlag GmbH, 1995.

6. [Law on food production and food safety, etc. (The Food Law)]. https://lovdata.no/dokument/NL/lov/2003-12-19-124 (24.5.2018).

7. Craig SAS. Betaine in human nutrition. Am J Hum Nutrition 2004; 80: 539-49. https://academic.oup.com/ajcn/article/80/3/539/4690529 (8.23.2018)

8. Elkins R. Miracle sugars. North Orem, Utah: Woodland Publishing, 2003. http://www.woodlandpublishing.com. ISBN-13: 978-1580543675

9. Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increases Km): relevance to genetic disease and polymorphisms. Am J Clin Nutrition 2002; 75: 616-68. https://academic.oup.com/ajcn/article/75/4/616/4689367

10. Hoffer A. Orthomolecular treatment for schizophrenia and other mental illnesses. Toronto, Canada: The International Schizophrenia Foundation, 2011. http://www.orthomed.org

11. Weston A. Price Foundation. A Response to Dr. Joe Mercola on Cod Liver Oil. April 30, 2009. https://www.westonaprice.org/health-topics/cod-liver-oil/a-response-to-dr-joe-mercola-on-cod-liver-oil/

12. Leech J. Wild vs Framed Salmon – Can Some Fish Be Bad for You? Healthline, June 4, 2017. https://www.healthline.com/nutrition/wild-vs-farmed-salmon

13. Sætre S, Østli K. [Children pay the price for Norwegian dietary advice] Morgenbladet 5.11.2018. https://morgenbladet.no/aktuelt/2018/05/barna-betaler-prisen-norske-kostholdsrad

14. [For after thought – foods with environmental toxins.] https://spiseforaaleve.wordpress.com/2013/03/01/til-ettertanke-mat-med-miljogifter/comment-page-1/ (9.2.2018)

15. Grossman K. The truth about nutrient dense foods that nobody wants to hear. https://blog.radiantlifecatalog.com/truth-about-nutrient-dense-foods (5.26.2018).

16. Hall RH. Food for Nought. The decline in nutrition. New York: Vintage Books 1976. ISBN-13: 978-0394717531

17. Gunnars K. The 11 most nutrient dense foods on the planet. 6.22.2017. https://www.healthline.com/nutrition/11-most-nutrient-dense-foods-on-the-planet (5.26.2018).

18. Bear FE, Toth SJ, Prince AL. Variations in mineral composition of vegetables. Soil Science of America Proceedings 1948; 13: 380-4. https://njaes.rutgers.edu/pubs/bear-report/

19. Rorty J, Norman NP. Tomorrow’s Food; the coming revolution in nutrition. New York: Prentice Hall, 1947/1956.

20. Heard GW. Man versus Toothache. (c)George W. Heard, Hereford, Texas. Milwaukee, WI: Lee Foundation for Nutritional Research, 1952.

21. “The Town Without A Toothache,” text, 1959; http://texashistory.unt.edu/ark:/67531/metapth46551/m1/1/University of North Texas Libraries, The Portal to Texas History, http://texashistory.unt.edu

22. Hintze KJ, Lardy GP, Marchello MJ, et al. Areas with high concentration of selenium in the soil and forage produce beef with enhanced concentrations of selenium. Journal of Agricultural and Food Chemistry 2001; 49: 1062-7. https://pubs.acs.org/doi/abs/10.1021/jf000699s

23. Mäkelä AL, Näntö V, Mäkela P, et al. The effect of nationwide selenium enrichment of fertilizers on selenium status of healthy Finnish medical students living in South Western Finland. Biological Trace Element Research 1993; 36: 151-7. https://link.springer.com/article/10.1007/BF02783174

24. Dean C. The Magnesium Miracle. Second Edition. New York: Ballantine Books, 2017. ISBN-13: 978-0399594441

25. Hickey S, Saul AW. Vitamin C: the real story. Laguna Beach, CA: Basic Health Publications, Inc., 2008. ISBN-13: 978-1591202233

26. Rucklidge JJ, Andridge R, Gorman B, et al. Shaken but unstirred? Effects of micronutrients on stress and trauma after an earthquake: RCT evidence comparing formulas and doses. Human Psychopharmacology and Clinical Experience 2012; 27: 440-54. https://onlinelibrary.wiley.com/doi/abs/10.1002/hup.2246

27. Cordain L, Gotshall RW, Eaton SB. Evolutionary aspects of exercise. In: Simopoulos AP, ed.: Nutrition and fitness: Evolutionary aspects. World Review of Nutrition and Diet 1997; 81: 49-60. https://www.ncbi.nlm.nih.gov/pubmed/9287503

28. Zenk SN, Powell LM, Rimkus L, et al. Relative and absolute availability of healthier food and beverage alternatives across communities in the United States. American Journal of Public Health 2014; 104: 2170-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202991/

29. Waldbott GL. Health effects of environmental pollutants. Second edition. St. Louis, MI: The C. V. Mosby Company, 1978. ISBN-13: 978-0801653308

30. Rogers, Sherry A. Detoxify or die. Sarasota, FL: Sand Key Company, Inc., 2002. https://www.amazon.co.uk/s/ref=nb_sb_noss_2?url=search-alias%3Daps&field-keywords=Detoxify+or+die

31. Smith MR, Myers SS. Impact of anthropogenic CO2 emissions on global human nutrition. Nature Climate Change 2018; 8: 834-9. https://www.nature.com/articles/s41558-018-0253-3

32. Dietary Reference Values. https://en.wikipedia.org/wiki/Dietary_Reference_Values (9.1.2018)

33. Essential Nutrients. http://www.nutrientsreview.com/glossary/essential-nutrients (9.1.2018)

34. [Norwegian Food Authority. Revision of national maximum limits for vitamins and minerals in nutritional supplements – separate maximum limits; published 11.9.2016, last changed 6.21.2017]. https://www.mattilsynet.no/mat_og_vann/spesialmat_og_kosttilskudd/kosttilskudd/

35. Ames BN. Prevention of mutation, cancer, and other age-associated diseases by optimizing micronutrient intake. Journal of Nucleic Acids 2010; 210: 1-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945683/

36. Halliwell B, Gutteridge HMC. Free radicals in biology and medicine. 5th edition. Oxford, NY: Clarendon Press, 2015. ISBN-13: 978-0198717485

37. Hertoghe T. The hormone handbook. Copyright (c) 2006 Thierry Hertoghe. Surrey, UK: International Medical Publications, 2006.

38. Edwards AJ, Nguyen CH, You CS, et al. a- og ß-carotene from a commercial carrot puree are more bioavailable to humans than from boiled-mashed carrots, as determined using an extrinsic stable isotope reference method. Journal of Nutrition 2002; 132: 159-67. https://academic.oup.com/jn/article/132/2/159/4687130

39. Unlu NZ, Bohn T, Clinton SK et al. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. The Journal of Nutrition 2005; 135: 431-6. https://www.ncbi.nlm.nih.gov/pubmed/15735074

40. Boback SM, Cox CL, Ott BD et al. Cooking and grinding reduces the cost of meat digestion. Comparative biochemistry and physiology. Part A, molecular & integrative physiology 2007; 148: 651-6. https://www.ncbi.nlm.nih.gov/pubmed/17827047

41. Carmody RN, Wrangham RW. Cooking and the human commitment to a high-quality diet. Cold Spring Harbor Symposium on Quantitative Biology 2009; 74: 427-34. https://www.ncbi.nlm.nih.gov/pubmed/19843593

42. Hoffer A, Saul AW. Orthomolecular medicine for everyone. Laguna Beach, CA: Basic Health Publications, Inc., 2008. ISBN-13: 978-1591202264

43. Hjartåker A, Pedersen JI, Müller H mfl. Grunnleggende ernæringslære. 3. utgave. [Basic nutrition] Oslo: Gyldendal Norsk Forlag AS, 2017.

44. Levy TE. Vitamin C, infectious diseases, & toxins. Curing the incurable. 3rd Edition. (c)Thomas E. Levy 2011. Medfox Pub. ISBN-13: 978-0977952021

45. Pauling L. How to live longer and feel better. New York: W. H. Freeman and Company, 1986. ISBN-13: 978-0870710964

46. Cathcart, RF III. The method of determining proper doses of vitamin C for the treatment of disease by titrating to bowel tolerance. Journal of Orthomolecular Medicine 1981; 10: 125-32. http://orthomolecular.org/library/jom/1981/pdf/1981-v10n02-p125.pdf

47. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients. A meta-analysis of prospective studies. JAMA 1998; 279: 1200-5. https://jamanetwork.com/journals/jama/fullarticle/187436

48. Moore TJ, Cohen MR, Furberg CD. Serious adverse drug events reported to the Food and Drug Administration, 1998-2005. Archives of Internal Medicine 2007; 167: 1752-9. https://www.ncbi.nlm.nih.gov/pubmed/17846394 .

49. Hitchen L. Adverse drug reactions result in 250 000 UK admissions a year. BMJ 2006; 332: 1109. https://www.ncbi.nlm.nih.gov/pubmed/16690649 .

50. Befring AKC. Helse- og omsorgsrett. [Health and Care] Oslo: CappelenDamm AS, 2017.

Nutritional Medicine is Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Find a Doctor

To locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml

The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource.

Editorial Review Board:

Ilyès Baghli, M.D. (Algeria)
Ian Brighthope, M.D. (Australia)
Prof. Gilbert Henri Crussol (Spain)
Carolyn Dean, M.D., N.D. (USA)
Damien Downing, M.D. (United Kingdom)
Michael Ellis, M.D. (Australia)
Martin P. Gallagher, M.D., D.C. (USA)
Michael J. Gonzalez, N.M.D., D.Sc., Ph.D. (Puerto Rico)
William B. Grant, Ph.D. (USA)
Tonya S. Heyman, M.D. (USA)
Suzanne Humphries, M.D. (USA)
Ron Hunninghake, M.D. (USA)
Michael Janson, M.D. (USA)
Robert E. Jenkins, D.C. (USA)
Bo H. Jonsson, M.D., Ph.D. (Sweden)
Jeffrey J. Kotulski, D.O. (USA)
Peter H. Lauda, M.D. (Austria)
Thomas Levy, M.D., J.D. (USA)
Homer Lim, M.D. (Philippines)
Stuart Lindsey, Pharm.D. (USA)
Victor A. Marcial-Vega, M.D. (Puerto Rico)
Charles C. Mary, Jr., M.D. (USA)
Mignonne Mary, M.D. (USA)
Jun Matsuyama, M.D., Ph.D. (Japan)
Dave McCarthy, M.D. (USA)
Joseph Mercola, D.O. (USA)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, M.D. (Finland)
Tahar Naili, M.D. (Algeria)
W. Todd Penberthy, Ph.D. (USA)
Dag Viljen Poleszynski, Ph.D. (Norway)
Jeffrey A. Ruterbusch, D.O. (USA)
Gert E. Schuitemaker, Ph.D. (Netherlands)
Thomas L. Taxman, M.D. (USA)
Jagan Nathan Vamanan, M.D. (India)
Garry Vickar, MD (USA)
Ken Walker, M.D. (Canada)
Anne Zauderer, D.C. (USA)

Andrew W. Saul, Ph.D. (USA), Editor-In-Chief
Editor, Japanese Edition: Atsuo Yanagisawa, M.D., Ph.D. (Japan)
Robert G. Smith, Ph.D. (USA), Associate Editor
Helen Saul Case, M.S. (USA), Assistant Editor
Ralph K. Campbell, M.D. (USA), Contributing Editor
Michael S. Stewart, B.Sc.C.S. (USA), Technology Editor
Jason M. Saul, JD (USA), Legal Consultant

Comments and media contact: drsaul@doctoryourself.com OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication.

0

What I’d Really Love to Tell You About the Methylation Cycle

Dr. Hank Liers, PhD geneticsI previously published “Homocysteine Genetics – Coenzyme B Vitamins” in which I considered in-depth how homocysteine (an intermediate chemical in the Methylation Cycle) is formed from methionine, how genetics affects the metabolic pathways, and how B vitamins are used in metabolic pathways. I also wrote “Folate Ingredients – Folinic Acid & 5-MTHF” which discussed how coenzyme folate vitamins are far superior to the synthetic folic acid form. In today’s article, I take a broader view of the topic that encompasses the Methylation Cycle, genetics, and B vitamins.

THE METHYLATION CYCLE

The Methylation Cycle is considered to be one of the most important metabolic pathways in the human body. Its most important function is to provide methyl groups via SAM (S-adenosyl methionine) to hundreds of different body substrates. Methylation is continually occurring in the body, transforming many millions of molecules throughout the body every second. Molecules receive methyl groups, then separate and recombine continuously, transforming and reforming constantly in the ongoing process of life!

As a reminder of the pathways involved in the Methylation Cycle, the following figure provides a flow chart showing the details.

 

Methylation Cycle

Figure 1. Metabolic Pathways in Methylation Cycle

A key purpose of this cycle is to provide methyl groups (CH3) needed by a broad range of of body functions (over 200 different functions). Examples include:

  1. Influences the genetic expression that parents give their children and helps guide the development of the embryo.
  2. Is needed by the nervous system to produce neurotransmitters and maintain the nerves.
  3. Mobilizes fats and cholesterol so they do not accumulate where they are harmful, such as the arteries and liver.
  4. Regulates hormones, including, estrogen, adrenaline, and melatonin.
  5. Detoxifies harmful chemicals and histamine a prime substance involved in inflammation.
  6. Helps repair damaged proteins in the cells so they can function properly.
  7. Protects the DNA in the genome (genetic code) to reduce the chances of mutation.
  8. Creates antioxidants used in the antioxidant defense system.

DESCRIPTION OF PATHWAYS WITHIN THE METHYLATION CYCLE

The overall flow of the Methylation Cycle begins with dietary methionine (an essential amino acid) which combines with ATP (adenosine triphosphate – body energy) to form SAM (S-adenosyl methionine) – the common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. When SAM transfers a methyl group to a body chemical the residue from this reaction leads to the production of homocysteine.

Homocysteine can be converted in the transsulfuration pathway that requires coenzyme vitamin B6 to produce cysteine, glutathione, taurine, and sulfates. These sulfur containing substances provide important antioxidant protection and detoxification functions in the body.

Homocysteine can be converted back to methionine through the betaine (trimethyl glycine) pathway which requires zinc and magnesium. This pathway also requires dietary betaine or choline which the body can convert into betaine.

Also, homocysteine can be converted back to methionine via the remethylation pathway which requires 5-MTHF, coenzyme vitamin B2 and methylcobalamin (B12).

GENETICS

It is important to understand that each of the pathways described above are able to be executed only in the presence of enzymes (shown in blue boxes in the diagram) created by specific genes in your genetic code. For example, Betaine-Homocysteine S-Methyltransferase (BHMT) is the enzyme required in the betaine pathway, Cystathione Beta Synthase (CBS) is the enzyme required in the transsulfuration pathway, and Methylenetetrahydrofolate Reductase (MTHFR) and Methionine Synthase (MS) are enzymes required in the remethylation pathway.

Assuming that you have perfect genetics (no mutations, SNPs, free radical damage, insertions/deletions, etc.), the proper functioning of these pathways are still subjected to the fact that the required vitamins and minerals (vitamin B6, vitamin B2, Folate, vitamin B12, zinc, magnesium, and betaine) need to be provided by your diet or from supplements for the body to function correctly.

In addition, exposure to high levels of toxins from your environment and high levels of stress require that the nutritional needs will be even higher for the pathways to work properly. For example, exposure to high levels of toxins requires that the transsulfuration pathway be more active possibly reducing the amount of available methionine to support necessary methyl transfer reactions.

For these reasons alone the consensus of knowledgeable practitioners is that you should be eating an organic whole foods diet, taking appropriate nutritional supplements, avoiding and eliminating toxins from food, water, and air (living in a clean environment), and avoiding an unduly stressful life. All of these actions fall into the category of Epigenetics which you generally have control over!! Doing these things alone could significantly balance the functioning of your Methylation Cycle and improve your health.

Unfortunately, few people have perfect genetics which often causes the various pathways in the Methylation Cycle to become imbalanced and unable to correct the dysregulation imposed upon the body. For example, the enzyme MTHFR can have heterozygous (single chromosome) genetic variations in up to 50% of certain populations and homozygous genetic variations (both chromosomes) in 10% or more of certain populations.

Some disorders that researchers have associated with MTHFR genetic variations include:

  • Alzheimer’s disease
  • Asthma
  • Atherosclerosis
  • Autism
  • Bipolar disorder
  • Bladder issues
  • Blood clots
  • Breast problems
  • Chemical sensitivity
  • Chronic fatigue syndrome
  • Down syndrome
  • Epilepsy
  • Fibromyalgia
  • Gastric problems
  • Glaucoma
  • Heart murmurs
  • High blood pressure
  • Irritable bowel syndrome
  • Leukemia
  • Male infertility
  • Methotrexate toxicity
  • Migraines with aura
  • Multiple sclerosis
  • Myocardial infarction
  • Nitrous oxide toxicity
  • Parkinson’s disease
  • Pulmonary embolisms
  • Schizophrenia
  • Stroke
  • Thyroid issues
  • Unexplained neurologic disease
  • Vascular dementia

This extensive list is highly significant and tells us that it is very important to have genetic testing done for the genes/enzymes in the Methylation Cycle pathway. I prefer the BodySync genetic test which evaluates the key Methylation Cycle genes plus many other important genes in a single test.

B VITAMINS AND MINERALS

We are strong believers that everyone should start their nutritional program by eating a balanced, organic, whole foods diet. We have been doing this ourselves for the past 30 years. Unfortunately, only a small percentage of people follow this advice and in most cases this leads to poor nutritional status that does not adequately support the body’s needs. This is especially true with respect to obtaining the nutrients needed to support the Methylation Cycle.

Nine of our family members and associates have taken the BodySync genetic test which evaluates the condition of 45 different enzymes including CBS, MTHFR (2 variations), MTR (related to B12 and 5-MTHF as they relate to methionine synthase – MS), and MTRR (related to maintaining B12 levels needed by the MTR enzyme). In every case the results showed at least 2 and up to 4 enzymes had genetic variations. These results indicate that the nutritional requirements for folate as 5-MTHF, vitamin B12 as methylcobalamin, vitamin B6, vitamin B2, magnesium and zinc will likely be significantly greater than normal.

Given the above information, it seems essential for good health to take nutritional supplements that provide the important nutrients. Below I will discuss various formulas that I have developed and refined over many years that are useful especially for the Methylation Cycle.

Please note that Health Products Distributors, Inc. (HPDI) is the preferred supplier of nutritional supplements by the BodySync genetic testing company.

MULTIVITAMINS

When looking at the total needs the body has for nutrients that the body does not produce, including fat soluble vitamins (A, D (some), E, K1 and K2), vitamin C, B vitamins (B1, B2, B3, B5, B6, folate, B12, biotin, choline, and inositol), minerals (Ca, Mg, Zn, Se, Cu, Mn, Cr, Mo, K, boron, and vanadium), and betaine it only seems wise to include as a top priority a Multivitamin that includes all of these in what I term therapeutic amounts (carefully selected after evaluating thousands of research studies carried out over many years.)

In this context, it is important to recognize that every enzymatic reaction in the body requires mineral cofactors in order to carry out its function. A good multivitamin provides many of these required minerals.

Additionally, the multivitamin should contain ingredient forms that research has confirmed to be the most absorbable and usable by the body. These include coenzyme B vitamins, Krebs cycle (citrate, alpha-ketoglutarate, succinate, fumarate, & malate) minerals, and amino acid chelates.

In the context of supporting the Methylation Cycle we are looking for specific forms and amounts of B vitamins that can adequately provide the body’s needs. The means that there should be coenzyme folate as 5-MTHF of at least 400 mcg, coenzyme vitamin B-12 as methylcobalamin of at least 200 mcg, Vitamin B6 (including significant amounts of pyridoxal 5′ phosphate) of at least 40 mg, and Vitamin B2 (including significant amounts of riboflavin 5′ phosphate) of at least 25 mg. In addition, magnesium (100 mg) and zinc (at least 20 mg) should be provided.

Please note that the body’s requirements for magnesium is generally accepted by nutritional experts to be higher than 400 mg daily (and as high as 1,000 mg daily). For this reason we generally recommend that a person take supplemental magnesium (such as HPDI’s MYO-MAG) at levels over 400 mg daily.

The two multivitamin formulas Health Products Distributors provides for adults that meet these requirements (and more) are the Hank & Brian’s Mighty Multi-Vite and Multi Two (in both capsule and tablet forms). Click on the bottles below for technical details.

Hank & Brian's Mighty Multi-Vite multivitamin methylation cycle

Multi Two Caps or Tablets methylation cycle

B COMPLEX

In situations where significant genetic variations are present it may be wise to add a B COMPLEX supplement to the MULTIVITAMIN to provide even larger amounts of the needed B vitamins. HPDI provides a B-Complex-50 product that includes significant amounts of coenzyme forms and contains 50 mg of Vitamin B1, 50 mg of Vitamin B2, 100 mg of Vitamin B3, 50 mg of Vitamin B6, 500 mcg of coenzyme folate (both folinic acid and 5-MTHF), 100 mcg of B12 (both methylcobalamin and hydroxocobalmin), 50 mg of Vitamin B5 (pantothenic acid), 500 mg of Biotin, 50 mg of choline, and 50 mg of inositol. Click on the bottle below for technical details.

B-Complex-50 full spectrum B vitamins with coenzyme forms methylation cycle

FOLATE AS 5-MTHF

In situations where an inadequate diet is present and genetic testing indicates an MTHFR variation (especially a homozygous variation) Health Products Distributors provides a 5-MTHF folate supplement that easily absorbs into the body and can be directly used in combination with Vitamin B12 to convert homocysteine to methionine. Click on the bottle below for technical details.

5-MTHF 1 mg in veggie cap methylation cycle

5-MTHF 1 mg in veggie cap

B-12 as METHYLCOBALAMIN

It is often the case for older patients and vegetarians that Vitamin B12 is deficient. In these cases it is wise to supplement with a significant amount of methylcobalamin to ensure that the Methylation Cycle has sufficient to effectively convert homocysteine into methionine. Health Products Distributors Vitamin B12 contains 5 mg of methylcobalamin in sublingual lozenge form that supports excellent absorption even if swallowed and absorbed by diffusion. Click on the bottle below for technical details.

Vitamin B-12 5 mg methylcobalamin sublingual lozenge methylation cycle

Vitamin B-12 – 5 mg Methylcobalamin sublingual lozenge.

MINERALS

Magnesium and zinc are two important minerals used in the betaine pathway of the Methylation Cycle in which homocysteine is converted back to methionine.

In the body magnesium is involved in more than 400 essential metabolic reactions and is required by the adenosine triphosphate (ATP)-synthesizing protein in mitochondria. ATP, the molecule that provides energy for almost all metabolic processes, exists primarily as a complex with magnesium (MgATP). Therefore, it also is involved in converting methionine to SAM.

Over 300 different enzymes depend on zinc for their ability to catalyze vital chemical reactions. Zinc-dependent enzymes can be found in all known classes of enzymes.

Health Products Distributors provides 100 mg magnesium/vcap in its MYO-MAG supplement which is especially important in increasing ATP in the Krebs Cycle. This product also contains vitamin B1, vitamin B2, and vitamin B6 with substantial amounts of coenzyme forms and manganese. Click on the bottle below for technical details.

MYO-MAG with 100 mg magnesium per serving key B vitamins methylation cycle

MYO-MAG with 100 mg magnesium per serving and key B vitamins.

Health Products Distributors provides 25 mg zinc/serving in its Double Zinc Plus supplement. This formula provides zinc in the picolinate and citrate forms as well as 3 mg of P5P (coenzyme B6). Click on the bottle below for technical details.

Double Zinc Plus supplement with P5P and 25 mg zinc methylation cycle

Double Zinc Plus supplement with P5P and 25 mg zinc

SUMMARY

The Methylation Cycle is recognized as one of the most important metabolic pathways in the human body. When not properly supported by key B vitamins and minerals, the Methylation Cycle can become severely imbalanced which can lead to a very wide range of poor health conditions. Furthermore, genetic variations in the genes that produce important enzymes allowing the Methylation Cycle to function correctly lead to even further imbalances and greater possibility for conditions of poor health.

In this article, I have provided insight into how the Methylation Cycle works and how it can be significantly supported by lifestyle changes regarding diet and environment (Epigenetics) and by specific B vitamins and mineral supplements that I have developed over many years. In addition, we have shown that knowledge gained from genetic testing can further provide a critical understanding of your specific needs so that your health can be optimized.

RELATED HPDI BLOG ARTICLES

Homocysteine Genetics – Coenzyme B Vitamins

 

0

NO DEATHS FROM NUTRITIONAL SUPPLEMENTS IN 2015

Fred Liers PhD Orthomolecular News Service No deaths from supplements vitaminsEvery year, HPDI publishes several articles from the Orthomolecular New Service (OMNS). This month we share a news release from OMNS about the fact in 2015 there were no deaths caused by nutritional supplements, including vitamins, minerals, amino acids, homeopathics, or herbs.

===

FOR IMMEDIATE RELEASE
Orthomolecular Medicine News Service, January 3, 2017

NO DEATHS FROM NUTRITIONAL SUPPLEMENTS, INCLUDING VITAMINS, MINERALS, AMINO ACIDS, HOMEOPATHICS, OR HERBS.
SAFETY CONFIRMED BY AMERICA’S LARGEST DATABASE.

by Andrew W. Saul, Editor

(OMNS, Jan 3, 2017) There were no deaths whatsoever from vitamins in the year 2015. The 33rd annual report from the American Association of Poison Control Centers shows zero deaths from multiple vitamins. And, there were no deaths whatsoever from vitamin A, niacin, pyridoxine (B-6) any other B-vitamin. There were no deaths from vitamin C, vitamin D, vitamin E, or from any vitamin at all.

no deaths supplements vitamins

Safe to consume: no deaths from nutritional supplements in 2015.

Not only are there no deaths from vitamins, there are also zero deaths from any supplement. The most recent (2015) information collected by the U.S. National Poison Data System, and published in the journal Clinical Toxicology (1), shows no deaths whatsoever from dietary supplements.

NO DEATHS FROM VITAMINS

Zero deaths from vitamins. Want to bet this will never be on the evening news? Well, have you seen it there? And why not?

After all, over half of the U.S. population takes daily nutritional supplements. If each of those people took only one single tablet daily, that makes some 170,000,000 individual doses per day, for a total of well over 60 billion doses annually. Since many persons take far more than just one single vitamin tablet, actual consumption is considerably higher, and the safety of vitamin supplements is all the more remarkable.

It was claimed that one person died from vitamin supplements in the year 2015, according to AAPCC’s interpretation of information collected by the U.S. National Poison Data System. That single alleged “death” was supposedly due to “Other B-Vitamins.” This was claimed back in 2012 as well, with no substantiation then, either. Indeed, the AAPCC report specifically indicates no deaths from niacin (B-3) or pyridoxine (B-6). That therefore leaves folic acid, thiamine (B-1), riboflavin (B-2), biotin, pantothenic acid, and cobalamin (B-12) as the remaining B-vitamins that could be implicated. However, the safety record of these vitamins is extraordinarily good; no fatalities have ever been confirmed for any of them.

Abram Hoffer, MD, PhD, repeatedly said: “No one dies from vitamins.” He was right when he said it and he is still right today. The Orthomolecular Medicine News Service invites submission of specific scientific evidence conclusively demonstrating death caused by a vitamin.

NO DEATHS FROM MINERALS

There were zero deaths from any dietary mineral supplement. This means there were no fatalities from calcium, magnesium, chromium, zinc, colloidal silver, selenium, iron, or multimineral supplements. Reported in the “Electrolyte and Mineral” category was a fatality from the medical use of “Sodium and sodium salts” and another fatality from non-supplemental iron, which was clearly and specifically excluded from the supplement category.

NO DEATHS FROM ANY OTHER NUTRITIONAL SUPPLEMENT

Additionally, there were zero deaths from any amino acid or herbal product. This means no deaths at all from blue cohosh, echinacea, ginkgo biloba, ginseng, kava kava, St. John’s wort, valerian, yohimbe, Asian medicines, ayurvedic medicines, or any other botanical. There were zero deaths from creatine, blue-green algae, glucosamine, chondroitin, or melatonin. There were zero deaths from any homeopathic remedy.

WHEN IN DOUBT, BLAME A SUPPLEMENT

There actually was one fatality alleged from some “Unknown Dietary Supplement or Homeopathic Agent.” This is hearsay at best, and scaremongering at worst. How can an accusation be based on the unknown? Claiming causation without even knowing what substance or ingredient to accuse is baseless.

TRUTH: NO MAN, WOMAN, OR CHILD DIED FROM ANY NUTRITIONAL SUPPLEMENT

If nutritional supplements are allegedly so “dangerous,” as the FDA, the news media, and even some physicians still claim, then where are the bodies? There aren’t any.

REFERENCES

Mowry JB, Spyker DA, Brooks DE et al. 2015 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 33rd Annual Report. Clinical Toxicology 2016, 54:10, 924-1109, http://dx.doi.org/10.1080/15563650.2016.1245421

Data for vitamins, minerals, herbs, amino acids, and other supplements are presented in Table 22-B.

The complete 187-page article is available for free download from https://aapcc.s3.amazonaws.com/pdfs/annual_reports/2015_AAPCC_NPDS_Annual_Report_33rd_PDF.pdfor download this and all previous AAPCC Annual Reports at http://www.aapcc.org/annual-reports/

Nutritional Medicine is Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Find a Doctor

To locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml

The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource.

Editorial Review Board:

Ian Brighthope, M.D. (Australia)
Ralph K. Campbell, M.D. (USA)
Carolyn Dean, M.D., N.D. (USA)
Damien Downing, M.D. (United Kingdom)
Michael Ellis, M.D. (Australia)
Martin P. Gallagher, M.D., D.C. (USA)
Michael J. Gonzalez, N.M.D., D.Sc., Ph.D. (Puerto Rico)
William B. Grant, Ph.D. (USA)
Tonya S. Heyman, M.D. (USA)
Suzanne Humphries, M.D. (USA)
Ron Hunninghake, M.D. (USA)
Michael Janson, M.D. (USA)
Robert E. Jenkins, D.C. (USA)
Bo H. Jonsson, M.D., Ph.D. (Sweden)
Jeffrey J. Kotulski, D.O. (USA)
Peter H. Lauda, M.D. (Austria)
Thomas Levy, M.D., J.D. (USA)
Stuart Lindsey, Pharm.D. (USA)
Victor A. Marcial-Vega, M.D. (Puerto Rico)
Dave McCarthy, M.D. (USA)
Joseph Mercola, D.O. (USA)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, M.D. (Finland)
W. Todd Penberthy, Ph.D. (USA)
Jeffrey A. Ruterbusch, D.O. (USA)
Gert E. Schuitemaker, Ph.D. (Netherlands)
Thomas L. Taxman, M.D. (USA)
Jagan Nathan Vamanan, M.D. (India)
Ken Walker, M.D. (Canada)
Atsuo Yanagisawa, M.D., Ph.D. (Japan)

Andrew W. Saul, Ph.D. (USA), Editor-In-Chief
Robert G. Smith, Ph.D. (USA), Assistant Editor
Helen Saul Case, M.S. (USA), Assistant Editor
Michael S. Stewart, B.Sc.C.S. (USA), Technology Editor
Jason M. Saul, JD (USA), Legal Consultant

Comments and media contact: drsaul@doctoryourself.com OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication.

To Subscribe to the Orthomolecular News Service (OMNS) free: http://www.orthomolecular.org/subscribe.html

OMNS Archive: http://orthomolecular.org/resources/omns/index.shtml

0

pH ADJUST ALKALINIZING FORMULA – NEW PRODUCT!

Dr. Hank Liers PhD pH Adjust alkalinizing mineral formulaFred Liers PhD pH Adjust alkalinizing mineral formulaToday HPDI launches a new product: pH Adjust. The new formula was created by Dr. Hank Liers, PhD. As its name implies, its primary application is to help balance pH levels in the body. That is, to support the creation of alkaline conditions — or alkalinization.

Because pH Adjust alkalinizes the body, it thereby may effectively counteract overly acidic conditions (acidosis), including acidic conditions in the digestive tract, blood, kidneys, and other organ systems.

 

pH Adjust

Our newest product pH ADJUST

Given the fact that acidosis—including chronic, low-grade acidosis—is common among individuals living in industrialized nations consuming high-levels of processed foods and other acid-forming foods, pH Adjust represents a simple, yet powerful means for achieving a healthy acid-base balance in the body.

HPDI specializes in the formulation of nutritional supplements, including vitamin formulas such as multivitamins and other foundational supplements, advanced antioxidant formulas, high-RNA superfoods, and various mineral products, including magnesium. pH Adjust may be considered a mineral product. Yet, it is different than any other HPDI formula.

That is, pH Adjust is not primarily formulated to provide nutrients to meet nutritional needs. Rather, the formula supports optimal health by facilitating improved acid-alkaline balance in the body. It may be used to effectively neutralize acidic conditions, and help counteract the tendency toward acidosis that persists among many individuals.

THE IMPORTANCE OF pH BALANCE

Health experts know that pH balance is extremely important, and that acidosis in the body contributes to various states of less than optimal health. It is known that acidic conditions can lead to adverse effects in many bodily systems, including the circulatory system, immune system, skeletal system, excretory system, muscular system, and reproductive system.

Chemically, pH stands for hydrogen ion concentration. The pH scale runs from 7 to 14, and pH 7 is considered neutral. A pH value of less than 7 is considered acidic whereas a pH value of greater than 7 is considered basic or alkaline. In the body, the ideal pH is somewhat alkaline: 7.30 to 7.5.

For therapeutic purposes, individuals can for short periods of time (from a few days to a couple weeks) raise their pH levels to 8.0. That is, short-term increases in pH (to 8.0) can be useful for rapidly changing conditions in the body from acidic to basic (alkaline).

DIET AND pH (ACID-BASE) BALANCE

Herman Aihara (author of Acid & Alkaline) and others have contributed to our understanding of acid and alkaline states in the body, and the roles played by foods in creating either conditions of acidity or alkalinity. In general, protein foods are “acid-forming” foods whereas most vegetables are “alkaline-forming” foods. A table of acid and alkaline forming foods are on our website at Effect of Food on Body Chemistry.

Thus, proteins (containing more nitrogen) tend to form acids in the body whether or not they themselves are acid, and vegetables (containing more potassium) tend for form bases in the body whether or not they themselves are basic. This fact supports the importance of vegetables in the diet not only for nutrients, but also as a means for ensuring acid-base balance.

An excellent food that provides a high potassium content is Dr. Hank’s Vegetable Soup. This soup tastes great and can help to keep a healthy acid-base balance in the body.

An excellent article published in the American Journal of Clinical Nutrition in 1998 looked at the key factors that determine acid-base balance in the body. Their conclusion was: “In summary, the results of this study indicate that in normal humans eating ordinary whole-food diets, the major determinants of differences in NEAP rate (net endogenous acid production) among subjects are differences in the protein and potassium content of the diet and that the absolute rate of net endogenous acid production for a given diet can be predicted simply from knowledge of the diet’s protein and potassium content.”

Potassium-containing foods provide the body with potassium that it can use to create alkaline conditions. Sodium can also support alkaline conditions in the body. In fact, potassium and sodium work together in the sodium-potassium pump that pumps sodium ions out of cells and potassium ions into cells using ATP, and that performs many essential functions, including nutrient transport, cell-volume regulation, and nerve conduction.

Danish chemist Jens Christian Skou shared the 1997 Nobel Prize in Chemistry for having discovered this pump, i.e., the ion-transporting enzyme, Na+K+ -ATPase in 1957 while at the University of Aarhus in Denmark.

It is notable that most individuals in Western societies obtain more than sufficient sodium and often less than sufficient potassium. Excessive sodium intake is associated with adverse effects on cardiovascular health.

In an interview with Dr. Richard Passwater in 2001, Dr. Richard Moore said: “When I looked at all the published data for both potassium and sodium in the diet—or in the urine which reflects the diet-and then looked at the incidence of hypertension, I could see that, as the K Factor (ratio of potassium to sodium in the diet) got above one or two, there was significantly less hypertension (high blood pressure). Actually a diet with a K Factor of three or above is not bad, but, for practical purposes, I think a K Factor above four is a better goal. Of course, even higher than that would be better in terms of general health. I say this based upon the fact that our ancestors had a K Factor of about 16 to 1 and we evolved having a K Factor something like that.”

Based upon this information, we have chosen a 3:1 ratio of potassium to sodium in the pH Adjust formula so that it consistent with a heart-healthy diet.

MEASURING pH LEVELS

The best way to measure pH levels is to use litmus paper. HPDI offers litmus paper in rolls (Hydrion brand) for this purpose providing about 100 tests per roll. You can test salivary or urinary pH. In order to test salivary pH, simply use a small strip of pH paper to dip into a small amount of saliva. Advantages of pH paper include rapid results, ease of use, and cost effectiveness.

litmus paper pH Adjust alkalinizing formula alkaline

Using pH paper is a fast, easy means to measure pH accurately

The color of the litmus paper indicates the pH level in saliva. Most litmus paper comes with an indicator chart showing colors corresponding to various pH levels. Alkaline states will generally produce a dark green, blue or purple color (most basic). Acidic states will range from yellow (most acidic) to light green.

Salivary pH and urinary pH are significantly affected by recent food consumption and other factors, so it it best to test pH hours after meals. We prefer to measure urinary pH since results are more consistent. Measuring urinary pH is a simple as placing a few drops of urine on the paper or dipping the paper into a sample cup.

It is best to measure your pH in the morning before consuming foods or drinks. Salivary and urinary pH are affected by recent food consumption, so re-test several hours after eating, and additionally throughout the day.

A consistent pH measurement of less than 7.0 indicates that you are too acidic (values less than 6.2 show extreme acidity). This indicates that you should consume more alkaline forming foods and/or take pH Adjust. A single dose of pH Adjust can change conditions in the body from acidic to alkaline within a few hours.

MINERALS: POTASSIUM, MAGNESIUM, AND SODIUM

As we mentioned, pH Adjust is not primarily formulated to provide minerals or other essential nutrients. HPDI has other products (like multivitamins and single-nutrient formulas) for that purpose.

However, pH Adjust is a mineral providing formula. That is, it provides potassium (in the forms of bicarbonate and glycinate), magnesium (in the form of carbonate), and sodium (in the form of bicarbonate).

And while the levels of potassium (141.6 mg or 4% daily value) and sodium (47.8 mg or 2% daily value) per dose of pH Adjust are relatively small, the level of magnesium is significant (105 mg or 26.3% daily value).

Moreover, the levels of these minerals in pH Adjust are balanced, so that sufficient potassium is obtained relative to sodium, and that sodium remains low in the formula (for reasons previously considered).

Note that the amounts of minerals listed (above) are obtained per dose, so additional doses will correspondingly increase the amounts of minerals. However, multiple doses should not significantly increase sodium levels. For example, more sodium may be obtained from a single salty snack than one or two doses of pH Adjust.

pH Adjust alkalinizing formula supplement facts alkaline

Supplements Facts table from pH Adjust product label.

DOSE INFORMATION

One dose is 1/4 teaspoon. For extremely acidic conditions, you can take 4–10 doses per day, depending on the level of acidity and using pH paper as a guide to ensure that pH levels remain balanced. That is, the goal is to balance pH and to not become too alkaline (a condition of alkalosis may occur above pH 8.2).

INFORMATION FROM THE PRODUCT PAGE (INTEGRATEDHEALTH.COM)

pH ADJUST may be used to increase salivary and urinary pH; counteract overly acidic conditions in the digestive tract, blood, and kidneys; and to supplement the body with the minerals potassium, magnesium, and sodium.  The product contains (in powder form) potassium bicarbonate, magnesium carbonate, potassium glycinate, and sodium bicarbonate. Each serving (about ¼ tsp) contains about 300 mg of bicarbonate, 260 mg of carbonate, 142 mg of potassium, 105 mg of magnesium, 48 mg of sodium, and 100 mg of glycine.

NUTRITIONAL CONSIDERATIONS AND APPLICATIONS

The minerals potassium, sodium, and magnesium are key substances that are involved in many important functions in the body. When combined in bicarbonates (potassium & sodium), carbonates (magnesium), and glycinate (potassium) these chemicals can help to adjust and balance pH that are crucial to body function.

The processed food diets with a high protein content consumed by many people in the US and elsewhere produce conditions in the body of acidity. This in turn leads to decreased oxygenation of our cells and a greater use of anaerobic processes in metabolism. This, in turn, leads in inadequate ATP (energy) production and the presence of unwelcome anaerobic cells and organisms.

BICARBONATE

Bicarbonate is a major element in our body. Secreted by the stomach, it is necessary for digestion. When ingested, for example, with mineral water, it helps buffer lactic acid generated during exercise and additionally reduces the acidity of dietary components. Additionally, it has a prevention effect on dental cavities. Each ¼ tsp of pH ADJUST contains about 300 mg of bicarbonate.

Bicarbonate is present in all body fluids and organs and plays a major role in the acid-base balances in the human body. The first organ where food, beverages and water stay in our body is the stomach. The mucus membrane of the human stomach has 30 million glands which produce gastric juice containing not only acids, but also bicarbonate.

The flow of bicarbonate in the stomach amounts from 24.4 mg/hr for a basal output to 73.2 mg/hr for a maximal output. Thus at least 500 mg of bicarbonate is secreted daily in our stomach. This rate of gastric bicarbonate secretion is 2-10% of the maximum rate of acid secretion. In the stomach, bicarbonate participates in a mucus-bicarbonate barrier regarded as the first line of the protective and repair mechanisms. On neutralization by acid, carbon dioxide is produced from bicarbonate.

Effects of ingested bicarbonate: For digestion, bicarbonate is naturally produced by the gastric membrane in the stomach. This production will be low in alkaline conditions and will rise in response to acidity. In healthy individuals this adaptive mechanism will control the pH perfectly. To modify this pH with exogenous doses of bicarbonate, some clinical experiments have been conducted with sodium bicarbonate loads as high as 6 g. Only a transient effect on pH has been obtained. It is quite possible that bicarbonate in water may play a buffering role in the case of people sensitive to gastric acidity. Thus bicarbonate may be helpful for digestion.

The most important effect of bicarbonate ingestion is the change in acid-base balance as well as blood pH and bicarbonate concentration in biological fluids. It has been studied particularly in physically active people. Among the types of acid produced, lactic acid generated during exercise is buffered by bicarbonate. In a study on sports, a dose of 0.3 g per kg of body weight of sodium bicarbonate was given (15.25 g bicarbonate for a man of 70 kg) to subjects before performing 30 minutes cycling. While blood pH was increased and then maintained constant with this bicarbonate load due to the changes in blood bicarbonate concentrations, increased acidity and decreased bicarbonate blood concentration were observed in controlled subjects.

Prevention of renal stones: Bicarbonate also reduces the acidity of dietary components such as proteins. As an example, adding sodium or potassium bicarbonate to subjects on a high protein diet known to acidify urine and leading to hypercalciuria (high level of calcium in urine) has been shown to greatly reduce calcium urinary excretion. The effect has been observed with 5.5 g of bicarbonate supplement received daily for two weeks. A recent study highlights that a bicarbonate-rich mineral water could be useful in the prevention of the recurrence of calcium oxalate and uric acid renal stones.

Controls water absorption: many oral hydration solutions contain bicarbonate showing the usefulness of bicarbonate to control water absorption in patients at risk of dehydration.

Maintains blood pressure: Sodium intake is restricted in patients with hypertension, but it is demonstrated that the accompanying anion, such as bicarbonate, plays an important role. It is now well established that sodium bicarbonate does not raise blood pressure to the same extent as do the corresponding amounts of sodium chloride.

Decreases dental plaque: Bicarbonate has been shown to decrease dental plaque acidity induced by sucrose and its buffering capacity is important to prevent dental cavities. Other studies have shown that bicarbonate inhibits plaque formation on teeth and, in addition, increases calcium uptake by dental enamel.

CARBONATE

pH ADJUST contains about 260 mg of carbonate (and 105 mg of Mg) in the form of magnesium carbonate. Magnesium carbonate is used as an antacid that gets converted to Magnesium Chloride (MgCl) and CO2 by stomach acid. MgCl is a well absorbed form of magnesium.

MINERALS

The functions of the key minerals in pH ADJUST are described below. Each serving (about ¼ tsp) of pH ADJUST contains 142 mg of potassium, 105 mg of magnesium, and 48 mg of sodium.

POTASSIUM BENEFITS

Potassium levels influence multiple physiological processes, including:

  • Resting cellular-membrane potential and the propagation of action potentials in neuronal, muscular, and cardiac tissue. Due to the electrostatic and chemical properties, K+ions are larger than Na+ions, and ion channels and pumps in cell membranes can differentiate between the two ions, actively pumping or passively passing one of the two ions while blocking the other.
  • Supports hormone secretion and action
  • Improves vascular tone
  • Regulates systemic blood pressure
  • Increases gastrointestinal motility
  • Required for acid–base homeostasis
  • Supports glucose and insulin metabolism
  • Plays role in mineralocorticoid action
  • Supports renal concentrating ability
  • Regulates fluid and electrolyte balance

MAGNESIUM BENEFITS

Magnesium levels influence many physiological processes and functions. These include:

  • Increases energy by greater production of ATP (adenosine triphosphate) in cells
  • Supports production and function of over 300 enzyme systems in the body
  • Relaxes muscles / reduces muscle tension
  • Boosts vitality, endurance, and strength
  • Improves cardiovascular / heart health (relaxes cardiac muscle)
  • Relieves pain, including chronic pain
  • Ideal for arthritis / fibromyalgia / joint pain
  • Improves health of skin and mucous membranes
  • Eases headaches and migraine headaches
  • In sports medicine — replenishes Mg levels for energy (combats fatigue, and
    soothes pain and sore muscles)
  • Improves mood and reduces stress
  • Increases memory and cognitive functions
  • Boosts immune system
  • Improves assimilation of calcium / builds stronger bones
  • Balances calcium and magnesium levels in cells
  • Proven antimicrobial and antiseptic
  • Raises DHEA (dehydroepiandrosterone) levels naturally
  • Eases menopause and premenstrual syndrome (pms)
  • Supports healthy libido (and endocrine system)
  • Anti-aging, rejuvenating, revitalizing
  • Keeps cell membranes flexible
  • Controls cholesterol production in the body
  • Regulates blood sugar levels / needed for insulin production, transport, and
    function in cells
  • Supports antioxidant systems

SODIUM BENEFITS

Sodium levels influence many physiological processes and functions. These include:

  • Helps to regulate fluid levels in the human body.
  • Preventing sun stroke or heat exhaustion by replacing the loss of essential electrolytes.
  • Supports brain function – the brain is very sensitive to change in sodium levels of the body; deficiency of sodium often manifests as confusion and lethargy.
  • Along with properly hydrating the body, it is also important to supplement one’s body with mineral-rich juices (including potassium, magnesium and sodium) to prevent muscle cramps.
  • Is an important hydrating product that defends against the free radicals that accelerate the aging process.
  • Helps to eliminates excess carbon dioxide in the body.
  • Helps to facilitate the absorption of glucose by cells, resulting in the smooth transportation of nutrients in the body’s cell membranes.
  • Supports acid/base balance by altering the proportions of acid-base alkali phosphates in the body.
  • Regulates fluids by balancing the osmotic pressure in the human body
  • Shares an association with chlorides and bicarbonates in maintaining a sound balance between positively charged and negatively charged ions.

pH ADJUST PRODUCT DETAILS

COMPOSITION: One gram (about 1/4 tsp) of pH ADJUST provides the following percentages of the Daily Value

 Amount Per Serving % Daily Value
Potassium (from KHCO3 & glycinate)
Magnesium (from MgCO3)
Sodium (from NaHCO3)
141.7 mg
105.0 mg
47.8 mg
4%
26.3%
2%

Other ingredients:  None

INGREDIENTS: Potassium bicarbonate, magnesium carbonate, potassium glycinate, and sodium bicarbonate.

DIRECTIONS: As a dietary supplement, take ¼ tsp in 4–8 ounces of purified water preferably away from food, or as directed by a health care professional.

For extremely acidic conditions (pH consistently less than 6.2), try 4–10 doses per day, depending on acidity level. you may take multiple 1/4 tsp doses at once—we ourselves often take 1 tsp in a single dose. Use pH paper to ensure pH levels remain balanced, and do not become too alkaline (alkalosis may occur above pH 8.2).

DOES NOT CONTAIN: wheat, gluten, rye, barley, oats, corn, yeast, egg, dairy, soy, GMOs, sugar, wax, artificial preservatives, flavorings, or colorings.

SOURCES & RESOURCES

Acid & Alkaline by Herman Aihara

pH Adjust

Litmus Paper (Hydrion)