1

THE AMAZING HEALING POTENTIAL OF NATURAL NRF2 ACTIVATORS

Dr. Hank Liers, PhD natural nrf2 activators healing potential

When I first learned about Nrf2 activators in early 2012, I became quite enthusiastic about new knowledge that natural substances called polyphenolic compounds had the ability to activate this transcription factor. Once released in the cell Nrf2 can migrate to the nucleus and cause the body to endogenously produce high levels of key protective/antioxidant enzymes.

Also, I actively began the development of a product called Ultimate Protector that contains many concentrates and extracts from fruits, vegetables, and herbs. This product functions as 1) an excellent source of many Nrf2 activators, 2) a source of powerful antioxidants exhibiting an extremely high ORAC5.0 value per serving, and 3) a source of non-GMO Vitamin C.

More recently (July 2019) I have updated the product to Ultimate Protector+ that contains some exciting new ingredients that are now available on the market including SFB® (Standardized Fruit Blend) that contains among others mangosteen, goji berry, pomegranate, and apple extracts (click on the ingredient name to see detailed blog articles concerning these). In addition, I have added significant amounts of ingredients that are well known as potent Nrf2 activators and antioxidants including Green Tea extract and VinCare® whole grape extract.

 

Ultimate Protector+

New Ultimate Protector+

 

It is interesting to note that over 16 years ago I formulated a wonderful antioxidant formula called PRO-C™. PRO-C™ contains Buffered Vitamin C (in the form of powdered calcium, magnesium, and zinc ascorbates), high-potency Grape Extract (from grape pulp, skins, and seeds), Green Tea Extract, reduced Glutathione, N-Acetyl-L-Cysteine (NAC), R-Lipoic Acid, coenzyme forms of Vitamin B2 and Vitamin B6, and Selenium.

PRO-C™ has been one of the most effective products at supporting health I have ever formulated. Our current knowledge shows that PRO-C™ contains four effective Nrf2 activators, selenium needed for glutathione peroxidase functioning, Vitamin B2 and Vitamin B6 that support the effectiveness of glutathione, and antioxidants including Vitamin C and glutathione. I recently wrote a blog article titled PRO-C™ SUPER ANTIOXIDANT FORMULA that provides details concerning this formula.

My current personal list of supplements that I (and my wife) take every day includes both Ultimate Protector+™ and PRO-C™. We feel gifted to have these products available to us!!

In this article, I will provide greater insight into the natural sources of Nrf2 activators and how they perform in the body.

SOME KEY ENZYMES MODULATED BY Nrf2 ACTIVATORS

Activation of Nrf2 results in the induction of many cytoprotective proteins. We have seen articles that claim over 200 different enzymes can be produced in the body by Nrf2 activators, but have also seen reference that over 4,000 enzymes may be produced!  Examples of some of the key enzymes are shown below:

  • NAD(P)H quinone oxidoreductase 1 – a prototypical Nrf2 target gene that catalyzes the reduction and detoxification of highly reactive quinones that can cause redox cycling and oxidative stress.
  • Superoxide dismutases (SOD) – enzymes that catalyze the dismutation of superoxide (O2) into oxygen and hydrogen peroxide. Thus, they are an important antioxidant defense in nearly all cells exposed to oxygen where superoxide is one of the main reactive oxygen species. SOD is known to provide powerful antinflammatory activity.
  • Glutamate-cysteine ligase which is the rate-limiting step in the synthesis of glutathione (GSH), a very powerful endogenous antioxidant. Glutamate-cysteine ligase is a characteristic Nrf2 target gene, which establishes Nrf2 as a regulator of glutathione, one of the most important antioxidants in the body.
  • Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the breakdown of heme into the antioxidant biliverdin, the anti-inflammatory agent carbon monoxide, and iron. HO-1 is a Nrf2 target gene that has been shown to protect from a variety of pathologies, including sepsis, hypertension, atherosclerosis, acute lung injury, kidney injury, and pain.
  • The glutathione S-transferase (GST) family includes cytosolic, mitochondrial, and microsomal enzymes that catalyze the conjugation of GSH with endogenous and xenobiotic electrophiles. After detoxification by GSH conjugation catalyzed by GSTs, the body can eliminate potentially harmful and toxic compounds. GSTs are induced by Nrf2 activation and represent an important route of detoxification.
  • The UDP-glucuronosyltransferas (UGT) family catalyze the conjugation of a glucuronic acid moiety to a variety of endogenous and exogenous substances, making them more water soluble and readily excreted. Important substrates for glucuronidation include bilirubin, and acetaminophen. Nrf2 has been shown to induce UGT1A1 and UGT1A6.
  • Multidrug resistance-associated proteins  (Mrps) are important membrane transporters that efflux various compounds from various organs and into bile or plasma, with subsequent excretion in the feces or urine, respectively. Mrps have been shown to be upregulated by Nrf2 and alteration in their expression can dramatically alter the pharmacokinetics and toxicity of compounds.

NATURAL FOODS AND FOOD EXTRACTS PROMOTE THE EXPRESSION OF Nrf2

The March 2011 Epub Biochemical Basis for Functional Ingredient Design from Fruits reports: “Functional food ingredients (nutraceuticals) in fruits range from small molecular components, such as the secondary plant products, to macromolecular entities, e.g., pectin and cellulose, that provide several health benefits.  In fruits, the most visible functional ingredients are the color components anthocyanins and carotenoids.

“In addition, several other secondary plant products, including terpenes, show health beneficial activities.  A common feature of several functional ingredients is their antioxidant function. For example, reactive oxygen species (ROS) can be oxidized and stabilized by flavonoid components, and the flavonoid radical can undergo electron rearrangement stabilizing the flavonoid radical.  Compounds that possess an orthodihydroxy or quinone structure can interact with cellular proteins in the Keap1/Nrf2/ARE pathway to activate the transcription of antioxidant enzymes.

“Carotenoids and flavonoids can also exert their action by modulating the signal transduction and gene expression within the cell. Recent results suggest that these activities are primarily responsible for the health benefits associated with the consumption of fruits and vegetables.”

One of the interesting aspects of the extensive research that has been conducted is the fact that many of the polyphenols that have been shown to activate Nrf2 have been used in natural healing formulas for many years. For example, an article in a November 2010 production titled Nutraceutical antioxidants as novel neuroprotective agent expands on the classes of “antioxidant” compounds that are neuroprotective and operate either via direct antioxidant action or via the keap1-Nrf2 pathway:

“A variety of antioxidant compounds derived from natural products (nutraceuticals) have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1) flavonoid polyphenols like epigallocatechin 3-gallate (EGCG) from green tea and quercetin from apples; (2) non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from giant knotweed and grapes; (3) phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4) organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic.

“All of these compounds are generally considered to be antioxidants.  They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2) transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.”

DIETARY FLAVONOIDS AS NRF2 ACTIVATORS

One of the ways dietary flavonoids work to confer their multiple health effects is via the keap1-Nrf2 pathway.  That is substances which are both themselves antioxidants and activators of the keap1-Nrf2 pathway produce significant results through keap1-Nrf2 and activating the body’s own antioxidant and defensive systems.

Flavonoids are a large family of polyphenolic compounds synthesized by plants. Many of the common dietary flavonoids are shown in Table 1 below along with their common food sources.

Table 1: Common Dietary Flavonoids

Flavonoid Subclass Dietary Flavonoids Some Common Food Sources
Anthocyanidins  Cyanidin, Delphinidin, Malvidin, Pelargonidin, Peonidin, Petunidin Red, blue, and purple berries; red and purple grapes; red wine
Flavonols  Monomers (Catechins) Catechin, Epicatechin, Epigallocatechin, Epicatechin gallate, Epigallocatecin gallate Dimers and Polymers: Theaflavins, Thearubigins, Proanthocyanidins Catechins: Teas (particularly green and white), chocolate, grapes, berries, apples Theaflavins, Thearubigins: Teas (particularly black and oolong) Proanthocyanidins: Chocolate, apples, berries, red grapes, red wine.
Flavanones Hesperetin, Naringenin, Eriodictyol Citrus fruits and juices, e.g., oranges, grapefruits, lemons.
Flavonols Quercetin, Kaempferol, Myricetin, Isorhamnetin Widely distributed: yellow onions, scallions, kale, broccoli, apples, berries, teas.
Flavones Apigenin, Luteolin Parsley, thyme, celery, hot peppers.
Isoflavones Daidzein, Genistein, Glycitein Soybeans, soy foods, legumes.

In addition to flavonoids many other plant based substances appear to produce health benefits through hormetic effects mediated by Nrf2.  The December 2011 publication Nutritional antioxidants and adaptive cell responses: an update reports: “Many plant antioxidants, intaken through the daily diet or plant-derived dietary supplements, have been shown able to prevent free radical-related diseases by counteracting cell oxidative stress. However, it is now considered that the in vivo beneficial effects of these phytochemicals are unlikely to be explained just by their antioxidant capability.

“Several plant antioxidants exhibit hormetic properties, by acting as ‘low-dose stressors’ that may prepare cells to resist more severe stress. In fact, low doses of these phytochemicals activate cell signaling pathways (being the most prominent examples the modulation of the Nrf2/Keap1 pathway, the NF-κB pathway and the Sirtuin-FOXO pathway) but high doses are cytotoxic.

“Herein we review the adaptive responses induced by the most known plant hormetic antioxidants, which are sulforaphane, resveratrol, curcumin, flavonoids, green tea catechins and diallylsulphides [in garlic], as well as the molecular mechanisms involved in such responses. Furthermore, this review outlines that the hormetic properties of these bioactive plant antioxidants might be successfully employed for realizing health-promoting dietary interventions especially in the field of neurodegenerative diseases and cancer.”

 

Ultimate Protector+

INTERESTING FACTS REGARDING NRF2 ACTIVATORS

1) An interesting fact is that Nrf2 is ubiquitously expressed with the highest concentrations (in descending order) in the kidney, muscle, lung, heart, liver, and brain. 

2) Another important fact is that the well-known nutrition supplement lipoic acid is a potent activator of Nrf2 and thus increases Gluthatione levels, which may explain its protective effect against diabetic co-morbidities. Additionally, the nutritional supplements tocotrienols (active forms of Vitamin E) and N-Acetyl-L-Cysteine (NAC) are also effective Nrf2 activators!

3) We have observed that the natural plant substances with the highest ORAC5.0 values appear to be among the most effective Nrf2 activators. For example, see the table below. In particular, note that Curcumin (98%), Grape Seed Extract, Green Tea Extract, and Reservatrol which are commonly used for their excellent Nrf2 activator effects are the most powerful in-vitro antioxidants . Please note that Ultimate Protector+ is over 100% more powerful as an antioxidant than the best single plant ingredient.

TABLE 2: ORAC5.0™ COMPARATIVE RESULTS

Ingredient Peroxyl Radical Hydroxyl Radical Peroxy-nitrite Radical Super-
oxide Radical
Singlet O2 Radical Total ORAC5.0
Curcumin 98% 5,750 8,920 906 597 66,290 82,500
Bilberry 25% 7,000 25,000 1,000 16,000 5,000 54,000
Cocoa 10,000 28,000 1,000 11,000 2,000 52,000
Grape Seed Extract 17,000 47,000 1,000 25,000 4,000 94,000
Green Tea Extract 11,000 41,000 2,000 56,000 3,000 113,000
Coffee Berry Extract 5,000 29,000 1,000 1,000 2,000 38,000
Mangosteen 4,000 8,000 1,000 18,000 4,000 35,000
Pine Bark 7,000 23,000 1,000 17,000 2,000 50,000
Resveratrol 12,000 50,000 1,000 8,000 22,000 93,000
ULTIMATE PROTECTOR+    3,376    5,569 2,758 221,866 34,169 267,738
Results are expressed in micro mole TE/g

The total Ultimate Protector+ ORAC5.0 value per serving of 6 small vegetarian capsules (containing 3.55 g) is over 950,00 Micro mole TE.

4) Here is a list of the ingredients in ULTIMATE PROTECTOR+: USP-grade non-GMO Vitamin C, SFB® standardized fruit blend (~50% polyphenols, high-ORAC powder: 9,000 µmole TE/g) from Grape, Cranberry, Pomegranate, Blueberry, Apple, Mangosteen, Bilberry, Chokeberry, and Goji Berry), Curcumin (standardized extract with 95% curcuminoids), Trans-Resveratrol (98% from Giant Knotweed), Green Tea Extract (93% polyphenols, 50% EGCG), VinCare® Whole Grape Extract (>80% polyphenols, ORAC>19,000 µmole TE/g), Calcium Malate, Magnesium Malate, and Bioperine® (a patented black pepper extract that enhances absorption of all ingredients and is a known Nrf2 activator).

NEUROPROTECTION BY POLYPHENOL STIMULATION OF THE NRF2 / ARE PATHWAY 

Below are two abstracts that discuss how modulation of the Nrf2/ARE pathway by food polyphenols can provide neuroprotection through the activation of the heme-oxygenase enzyme.

Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. (Oct. 2011)

ABSTRACT

In recent years, there has been a growing interest, supported by a large number of experimental and epidemiological studies, for the beneficial effects of some phenolic substances, contained in commonly used spices and herbs, in preventing various age-related pathologic conditions, ranging from cancer to neurodegenerative diseases. Although the exact mechanisms by which polyphenols promote these effects remain to be elucidated, several reports have shown their ability to stimulate a general xenobiotic response in the target cells, activating multiple defense genes.

Data from our and other laboratories have previously demonstrated that curcumin, the yellow pigment of curry, strongly induces heme-oxygenase-1 (HO-1) expression and activity in different brain cells via the activation of heterodimers of NF-E2-related factors 2 (Nrf2)/antioxidant responsive element (ARE) pathway. Many studies clearly demonstrate that activation of Nrf2 target genes, and particularly HO-1, in astrocytes and neurons is strongly protective against inflammation, oxidative damage, and cell death. In the central nervous system, the HO system has been reported to be very active, and its modulation seems to play a crucial role in the pathogenesis of neurodegenerative disorders.

Recent and unpublished data from our group revealed that low concentrations of epigallocatechin-3-gallate, the major green tea catechin, induces HO-1 by ARE/Nrf2 pathway in hippocampal neurons, and by this induction, it is able to protect neurons against different models of oxidative damages. Furthermore, we have demonstrated that other phenolics, such as caffeic acid phenethyl ester and ethyl ferulate, are also able to protect neurons via HO-1 induction. These studies identify a novel class of compounds that could be used for therapeutic purposes as preventive agents against cognitive decline.

The major green tea polyphenol, (-)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. (Aug. 2009)

ABSTRACT

Oxidative stress induced by hyperglycemia is a key factor in the pathogenesis of diabetic complications, such as neuropathy. Recently, green tea catechins have received much attention, as they can facilitate a number of antioxidative mechanisms and improve glycemic control. The aim of this study was to investigate the cytoprotective effects of (-)-epigallocatechin-3-gallate (EGCG) against oxidative stress damage in a cell line of rat neurons. The role of heme oxygenase 1 (HO-1) induction by EGCG and the transcriptional mechanisms involved were also evaluated.

Immortalized rat neurons (H 19-7) were exposed to various concentrations of EGCG (10-200 microM). After treatments (6 or 24 hours), cells were harvested for the determination of heme oxygenase activity, mRNA levels, and protein expression. Nuclear levels of Nrf2, a transcriptional factor involved in HO-1 activation, were also measured. Neurons were pretreated for 12 hours with EGCG 50 microM or EGCG 50 microM + zinc protoporphyrin IX 10 microM and then exposed for 2 hours to 50 mmicro/mL glucose-oxidase before cell viability was determined.

In cultured neurons, elevated expression of HO-1 mRNA and protein were detected after 6 hours of incubation with 25-100 microM EGCG, and its induction relates with the activation of Nrf2. Interestingly, pre-incubation (12 hours) with EGCG 50 microM resulted in an enhanced cellular resistance to glucose oxidase-mediated oxidative damage; this cytoprotective effect was considerably attenuated by zinc protoporphyrin IX, an inhibitor of heme oxygenase activity.

In this study, we demonstrated that EGCG, the major green tea catechin, induced HO-1 expression in cultured neurons, possibly by activation of the transcription factor Nrf2, and by this mechanism was able to protect against oxidative stress-induced cell death.

 

The following review article abstract shows how natural products containing Nrf2 activator/antioxidant ingredients might be used to support health and anti-aging.

Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic Target in ALS (July 2012)

REVIEW ARTICLE

Abstract: Nrf2 (nuclear erythroid 2-related factor 2) is a basic region leucine-zipper transcription factor which binds to the antioxidant response element (ARE) and thereby regulates the expression of a large battery of genes involved in the cellular antioxidant and anti-inflammatory defence as well as mitochondrial protection. As oxidative stress, inflammation and mitochondrial dysfunctions have been identified as important pathomechanisms in amyotrophic lateral sclerosis (ALS), this signaling cascade has gained interest both with respect to ALS pathogenesis and therapy. Nrf2 and Keap1 expressions are reduced in motor neurons in postmortem ALS tissue.

Nrf2-activating compounds have shown therapeutic efficacy in the ALS mouse model and other neurodegenerative disease models. Alterations in Nrf2 and Keap1 expression and dysregulation of the Nrf2/ARE signalling program could contribute to the chronic motor neuron degeneration in ALS and other neurodegenerative diseases. Therefore, Nrf2 emerges as a key neuroprotective molecule in neurodegenerative diseases.

Our recent studies strongly support that the Nrf2/ARE signalling pathway is an important mediator of neuroprotection and therefore represents a promising target for development of novel therapies against ALS, Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s disease (AD). Simultaneous blockage of disease-specific broad toxic signaling cascades in motor neurons and glia may ultimately lead to more efficient neuroprotection in ALS. Stimulation of defense mechanisms that modulate neuroprotective genes which affect both neuronal and glial functions is a novel therapeutic approach and holds great promise. A key molecule to affect a variety of defense mechanisms is the transcription factor Nrf2 which activates the Nrf2/ARE signaling program. Nrf2 acts as master regulator of the cellular antioxidant response by stimulation of over 250 phase II genes that should be referred to as “prolife genes” since they save cells from death.

Nrf2 activation can at once regulate the expression of multiple cytoprotective enzymes that are capable of simultaneous inhibition of major pathogenic pathways described in ALS such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. Decreased Nrf2 expression was found in motor neurons in ALS postmortem brain and spinal cord. We have established the proof-of-concept that the Nrf2/ARE program is a viable target with excellent therapeutic potential for ALS. While there are still multiple gaps of knowledge on the path from Nrf2 dissociation to nuclear localization and its action as transcription factor, activation of the Nrf2 signaling cascade represents a novel and unique attempt to find a cure for ALS and other neurodegenerative diseases by fortifying the intrinsic defense mechanisms of neurons.

CONCLUSION

In this article I have shown how foods such as fruits, vegetables, herbs, and their extracts can stimulate extremely powerful protective enzymes in the body that work to keep us healthy. I strongly suggest that our readers eat an organic diet that emphasizes these foods and highly recommend the use of nutritional supplements such as Ultimate Protector+ and PRO-C™ that can further support the activation of the Nrf2 pathways in the body!

SOURCES

BLOG ARTICLES

 SCIENTIFIC ARTICLES

 

8

Natural Phytochemical Nrf2 Activators for Chemoprevention

Dr. Hank Liers here considers mechanisms involved in the activation of transcription factor Nrf2. Nrf2 is encoded by the NFE2L2 gene. Nrf2 can induce expression of genes encoding for antioxidant enzymes. Thus, it contributes to regulation of oxidative stress. Dr. Liers’ interest regards use of natural phytochemical Nrf2 activators for improving health. Also, see his post, “New Directions for Preventing Free-Radical Damage”(06.27.19).

INTRODUCTION
Nrf2 SIGNALING, FOODS, AND HEALTH

Dr. Hank Liers, PhD nrf2 activatorsDespite progress in the early detection and treatment of cancer, overall mortality rates for most cancers of epithelial origin have not declined during the past three decades. Consequently, in recent years attention has been directed to cancer prevention.

Carcinogenesis can be viewed as a multistep process in which the genes controlling proliferation, differentiation, and apoptosis are transformed and altered under selective environmental pressures.

Tumor development involves three distinct, yet closely linked, phases: initiation, promotion, and progression. The initiation phase is a rapid and irreversible event that occurs when a normal cell is exposed to a carcinogenic event. Frequently, unrepairable or misrepaired DNA damage happens in the initiation phase.

Promotion and progression processes are relatively longer processes than the initiation stage, and are considered reversible. Using various animal cancer models, scientists found that all three cancer development stages can be intervened by treatment with natural (or synthetic) chemicals.

Epidemiological and population studies also establish a close relationship between incidence of cancer and consumption of certain types of food.

The term “chemoprevention” was first coined in 1976 by Michael Sporn, when he referred to prevention of malignancy development by vitamin A and its synthetic analogs. Since then, chemoprevention has been adopted as one of the major tactics to modulate the process of carcinogenesis. Many research studies have proven this strategy is effective in reducing the incidence of cancer in well-defined high-risk groups.

Chemoprevention is by definition the use of natural (or pharmacologic) agents to inhibit the development of invasive cancer. The chemicals with a cancer preventive activity are referred to as chemopreventive agents. A chemopreventive agent can inhibit carcinogenesis either by blocking the DNA damage at initiation stage or by arresting or reversing the processes at promotion and progression stages. Most of the chemical substances used in cancer chemoprevention studies are natural phytochemicals found in food.

On the basis of the inhibition stages, chemopreventive agents have been classified into two categories, namely blocking agents and suppressing agents. Blocking agents act by preventing carcinogens from reaching the target sites, from undergoing metabolic activation, or from subsequently interacting with crucial cellular macromolecules such as DNA, RNA, and proteins at initiation stages.

Suppressing agents, on the other hand, inhibit the malignant transformation of initiated cells at either the promotion or the progression stage. Some agents may work on all three stages of carcinogenesis, and are hence classified into both categories.

DIETARY PHYTOCHEMICALS ARE NATURE’S CHEMOPREVENTIVE AGENTS

Many different animal models and cancer cell lines have been used to evaluate the chemopreventive values of phytochemicals, and have led to the discovery of new classes of chemopreventive agents. These agents include isothiocyanates (such as sulforaphane) from cruciferous vegetables, polyphenols from green and black tea, curcuminoids (from turmeric root), stilbenes such as resveratrol (from giant knotweed plant), flavonoids such as quercetin, and anthocyanidins (from many fruits and soybeans).

Progress also has been made in understanding the mode of action of newly identified chemopreventive agents. Exposure to the chemopreventive agents produces certain level of reactive oxygen species (ROS) or electrophiles, and causes mild oxidative/electrophilic stresses in cells.

Ultimate Protector+

Such mild oxidative stresses are sufficient to initiate the signaling pathways that, in turn, can activate a variety of cellular events, such as induction of phase II detoxification enzymes and antioxidant enzymes, expression of tumor-suppressor genes, and inhibition of cell proliferation and angiogenesis.

In order to survive under a variety of environmental or intracellular stresses, our cells have developed highly efficient protective mechanisms to protect themselves from oxidative or electrophilic challenges. Proteins that comprise phase II detoxification and antioxidant enzymes provide an enzymatic line of defense against reactive oxygen species. These enzymes include superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione S-transferase (GST), and glutamate cysteine ligase.

Induction of phase II and antioxidant enzymes are regulated at the DNA/gene level by antioxidant responsive element (ARE). ARE-mediated gene expression plays a central role in the cellular defense against cellular oxidative damage.

Experimental evidence supports the view that induction of ARE-mediated cytoprotective enzymes is a critical and sufficient mechanism to enable protection against carcinogenesis provoked by environmental and endogenous insults.

One of the key ARE-binding transcription factors is Nrf2. Induction of cytoprotective enzymes in response to ROS, electrophiles, and chemopreventive agents is a cellular event that is highly dependent on Nrf2 protein.

Nrf2 BOOSTS CELL DETOXIFICATION AND ANTIOXIDANT ENZYMES

By activating Nrf2 signaling, chemopreventive agents can increase cellular detoxification and antioxidant enzymes, thereby enhancing removal of reactive carcinogens and blocking carcinogenesis. This hypothesis has been tested in many studies.

For example, a study with sulforaphane (an isothiocyanate present abundantly in cruciferous vegetables) has shown that oral administration of this phytochemical could effectively block benzo[a]pyrene-induced forestomach tumors in mice. This protective effect was abrogated in mice that could not produce Nrf2, supporting a critical role of phase II detoxification and antioxidant enzymes in the prevention of carcinogenesis by chemopreventive agents.

Nrf2 is normally bound in the cytoplasm of cells to a protein called KEAP1. However, when an appropriate phytochemical agent attaches to a kinase receptor on the cell wall a phosphate group is released that causes the Nrf2 to be released. The Nrf2 then migrates into the cell nucleus and causes an antioxidant enzyme, such as SOD, to be released. This endogenously produced enzyme then can protect against ROS, electrophiles, and chemopreventive agents.

In practice, it has been found that a combination of multiple polyphenols works significantly better than single ingredients at activating Nrf2. In fact, in one experiment it was found that a combination of five ingredients all known to be Nrf2 activators was 18 times more effective than any single ingredient. Furthermore, it was found that this combination of five ingredients  increased levels of SOD by 30% and catalase by 56% after 120 days.

ULTIMATE PROTECTOR+
A POWERFUL, NATURAL Nrf2 ACTIVATION FORMULA FOR GREATER HEALTH

In view of the above information and the fact that new and more effective ingredients are available, we have updated our exceptional formula designed to maximize activation of Nrf2 in the body. This new product is ULTIMATE PROTECTOR+. It is among the most advanced, natural Nrf2 activator formula on the market today.

We include a broad range of Nrf2 activators in ULTIMATE PROTECTOR+. These activators source from a wide variety of freeze-dried and concentrated fruits, vegetables, and herbs. These include USP-grade non-GMO Vitamin C , SFB® standardized fruit blend (~50% polyphenols, high-ORAC powder: 9,000 µmole TE/g) from Grape, Cranberry, Pomegranate, Blueberry, Apple, Mangosteen, Bilberry, Chokeberry, and Goji Berry), Curcumin(standardized extract with 95% curcuminoids), Trans-Resveratrol(98% from Giant Knotweed), Green Tea Extract(90% polyphenols, 50% EGCG),  and VinCare® Whole Grape Extract (>80% polyphenols, ORAC>19,000 µmole TE/g). In addition the product contains Calcium Malate and Magnesium Malate, that support ATP and enzyme product and Bioperine® (a patented black pepper extract that significantly enhances absorption of all ingredients and is a known Nrf2 activator).

Phytochemicals provided by the array of freeze-dried and concentrated fruits, vegetables, and herbs in the formula include: Polyphenols, Phenolic acids, Proanthocyanidins (OPCs), Anthocyandins, Catechins, Glucosinolates, Zeaxanthin, Lutein, Lycopene, Beta Carotene, Chlorogenic acid, Ellagic acid, Quercetin, Quinic acid, Trans-Resveratrol, Ferulic acid, Punicalagins, Phloridzin, Polysaccharides, Xanthones and more.

In addition to these Nrf2 activators (above), ULTIMATE PROTECTOR+ contains an extremely broad array of plant based antioxidants from the same sources described above, as well as from non-GMO USP grade Vitamin C. All ingredients in this product have been used in chemoprevention protocols, as well as in protocols aimed at preventing free-radical damage in the body.

Ultimate Protector is now available on the HPDI website!

 

Ultimate Protector+Ultimate Protector+ is new and improved

 

REFERENCES

“Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells.”  Am J Physiol Lung Cell Mol Physiol 294: L478–L488, 2008.

“Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals.” Planta Med. 2008 Oct; 74(13): 1526–39. Epub 2008 Oct 20.

“Nrf2: a potential molecular target for cancer chemoprevention by natural compounds.” Antioxid Redox Signal. 2006 Jan–Feb; 8(1–2):99–106.

“Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models.” Acta Pharmacol Sin. 2007 Sep; 28(9): 1409–21.

“Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.” Acta Pharmacol Sin. 2007 Apr; 28(4): 459–72.

“Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-kappa B and AP-1 in abnormal cancer cells.” Food Chem Toxicol. 2008 Apr; 46(4): 1257–70. Epub 2007 Sep 15.

“Signal transduction events elicited by cancer prevention compounds.” Mutat Res. 2001 Sep 1; 480–481: 231–41.

“Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention.” Toxicology. 2010 Dec 5; 278(2): 229–41. Epub 2009 Oct 20.

“NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities.” Asia Pac J Clin Nutr. 2008; 17 Suppl 1:269–72.

“Regulation of NF-E2-Related Factor 2 Signaling for Cancer Chemoprevention: Antioxidant Coupled with Antiinflammatory.” Antioxid Redox Signal. 2010 Dec 1; 13(11): 1679–98. Epub 2010 Aug 17.

“Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention.” AAPS J. 2010 Mar; 12(1): 87–97. Epub 2009 Dec 15.

“Dietary chemopreventive compounds and ARE/EpRE signaling.” Free Radic Biol Med. 2004 Jun 15; 36(12): 1505–16.

 “Multiple molecular targets in cancer chemoprevention by curcumin.” AAPS J. 2006 Jul 7; 8(3): E443–9.

ADDITIONAL RESOURCES

Ultimate Protector™

The Amazing Healing Potential of Natural Nrf2 Activators – by Dr. Hank Liers

Preventing Free-Radical Damage Using Ultimate Protector™ – by Dr. Hank Liers

New Directions for Preventing Free-Radical Damage  – by Dr. Hank Liers

Ultimate Protector and the Role of Foundational Supplements for Health – by Fred Liers, PhD

2

PRO-C AND ULTIMATE PROTECTOR – COMPARISON OF ANTIOXIDANT FORMULAS

Dr. Hank Liers, PhD antioxidant formulasI have written extensively regarding the benefits HPDI’s PRO-C™ and Ultimate Protector™ antioxidant formulas. Based upon my experience with these formulas they are among the most effective antioxidant formulas available.

Both antioxidant formulas are included in HPDI’s system of foundational supplements and work most effectively when used with multivitamins, essential fats, and superfoods.

Yet, both formulas also are excellent standalone products that can rapidly provide the body with extremely high protection against free radicals.
Ultimate Protector antioxidant formulas

We are often asked “which of these two antioxidant formulas should I take?” My answer usually is to take both formulas. I personally take both of them on a daily basis.

Below I will briefly show the reason my answer is to take both formulas. I include information showing the relationship, in terms of ingredients of the two formulas (per serving of three (3) capsules daily of PRO-C and six (6) capsules daily of Ultimate Protector).

Ultimate Protector

INGREDIENTS OF ANTIOXIDANT FORMULAS

PRO-C™ (per serving of three “00” veggie caps)

• Buffered non-GMO Vitamin C (1,500 mg)  buffered with Ca/Mg/Zn
• Grape Extract (seed, skin, and pulp) (90 mg)
• Green Tea Extract 95% polyphenols 40% min. EGCG (90 mg)
• Glutathione – reduced (60 mg)
• N-Acetyl-l-Cysteine (NAC) (45 mg)
• R-Lipoic Acid (15 mg)
• Coenzyme B2/R5P (3 mg)
• Coenzyme B6/P5P (3 mg)
• Selenium from l-selenomethionine (30 mcg)
• Calcium (70 mg)
• Magnesium (70 mg)
• Zinc (6 mg)

ULTIMATE PROTECTOR™ (per serving of six “0” veggie caps)

• Vitamin C as non-GMO Ascorbic acid (1500 mg)
• Anthocomplete™ (135 mg)  Wild Blueberry, Wild Bilberry, Acai, Black Currant Extract, Sweet Cherry, Raspberry, Elderberry, Blackberry, Aronia, Black Soybean Hull Extract, and Blue Corn
• CoffeeBerry®Forte (135 mg)
• Vitaberry® Plus (90 mg) freeze-dried Grape Seed, Wild Blueberry, Wild Bilberry, Cranberry, Tart Cherry, Prune, Raspberry Seed, Strawberry, Trans-Resveratrol, and Quercetin
• VitaVeggie® (90 mg)  Broccoli, Broccoli Sprouts, Tomato, Kale, Carrot, Brussels Sprouts, Onion, and Spinach
• Curcumin 95%  (90 mg)
• Trans-Resveratrol 98% (90 mg)
• Malic Acid (500 mg)
• Calcium (60 mg)
• Magnesium (60 mg)
• BioPerine® (7.5 mg)

The products together contain nine (9) unique PRO-C™ ingredients, eight (8) unique Ultimate Protector™ ingredients, and three (3) overlapping ingredients.

DISCUSSION OF ANTIOXIDANT FORMULAS

PRO-C™

When PRO-C™ was first released in 1997 there were few publications available regarding Nrf2 ingredients and their benefits. The product design was based on the work of Dr. Lester Packer and his work done on the “Antioxidant Network” showing how nutrients such as Vitamin E, Vitamin C, Glutathione, and Lipoic acid work in a redox network to regenerate key nutrients in the body (see Figure 1. below)

doctor lester packer antioxidant formulas

                                                Figure 1. – Dr. Packer’s Antioxidant Network

At that time the powerful antioxidant formulas of Grape Seed Extract and Green Tea Extract were well known, but their powerful Nrf2 effects were not discovered until later. These ingredients are able to trap free radicals and conserve the body’s store of network antioxidants.

Also, the Nrf2 effects of NAC and Lipoic acid were not known at the time, but their powerful effects on the body were known to support the production of glutathione. Additionally, the super powerful glutathione (reduced) was included with supporting coenzymes B2 (from riboflavin 5′-phosphate) and B6 (from pyridoxal 5′-phosphate) that allow the enzymes glutathione reductase and transferase to function at a higher level.

ULTIMATE PROTECTOR™

From the beginning of the design process, Ultimate Protector™ (UP) was focused on creating a highly effective Nrf2 activator formula with outstanding antioxidant effects. Our understanding was that a very broad spectrum of plant polyphenols including flavonoids, anthocyandins, oligoproanthocyanidins (OPCs), etc. would deliver the best results.

We selected Futureceuticals Anthocomplete™, CoffeeBerry® Forte, Vitaberry® Plus, and VitaVeggie® in order to accomplish this and added Curcumin 95%, and Trans-Resveratrol 98% because of the powerful scientific findings regarding Nrf2 activation for these two ingredients. We found out later in testing that this combination of ingredients produces very high ORAC5.0 values (486,000 units/serving of six capsules) and works effectively against all of the primary types of free radicals in the body.

WHY TAKE BOTH PRO-C™ AND
ULTIMATE PROTECTOR™ ANTIOXIDANT FORMULAS?

Ultimate Protector versus PRO-C antioxidant formulas

Venn diagram showing unique and overlapping ingredients in PRO-C and Ultimate Protector.

There are 29 unique Nrf2 activator ingredients in Ultimate Protector (UP) and four (4) non-overlapping Nrf2 activator ingredients in PRO-C. Thus by taking both formulas you are able to receive 33 identifiable Nrf2 activator ingredients (870 mg). The amount of unique Nrf2 ingredients is probably significantly more than this because most of the identifiable ingredients contain a range of plant polyphenols.

Other unique ingredients of each formula include glutathione – reduced (60 mg), malic acid (500 mcg), zinc (6 mg), selenium (30 mcg), B2 (3 mg) and B6 (3 mg) from coenzyme forms, and Bioperine (7.5 mg) (for enhanced absorption of nutrients). These are important ingredients to have the formulas work more effectively together.

The overlapping ingredients in the formula include Vitamin C (3 gm – 1.5 gm from each formula), calcium (130 mg – 70 mg from PRO-C & 60 mg from UP), magnesium (130 mg – 70 mg from PRO-C & 60 mg from UP), and a little grape seed extract (~10 mg). We view this to be very positive especially because we believe that most people should take in at least 3 grams daily of Vitamin C. Equal amounts of calcium and magnesium balance each other in the body and have many important functions such as being part of critical enzymes.

SOURCES & RESOURCES

The Antioxidant Miracle. Lester Packer, PhD, and Carol Coleman. New York: John Wiley and Sons, 1999.

“Antioxidant Cocktail Update: Part 1: The Take Home Message is to Use Antioxidant Supplements”
(Interview of Dr. Lester Packer by Richard A. Passwater, PhD, Whole Foods Magazine, 1999)

HPDI BLOG ARTICLES

CONTACT US:

You can reach HPDI by calling 1-800-228-4265, email support(at)IntegratedHealth.com, or visit the retail website: IntegratedHealth.com

Health care professionals and resellers can apply for wholesale account, which includes access to the HPDI reseller website: HealthProductsDistributors.com. Email: Support(at)HealthProductsDistributors.com.

0

ULTIMATE PROTECTOR INGREDIENTS – CRANBERRY

Hank Liers cranberries cranberry ultimate protector Nrf2Ultimate Protector™ contains freeze dried cranberry, as well as components from 29 different fruits, vegetables, and herbs. Each of these ingredients contain substances that may be considered to be polyphenols, antioxidants, and Nrf2 activators. In this article I explore the ingredient strawberries, which is a component of VitaBerry Plus® from Futureceuticals.

VITABERRY PLUS®

VitaBerry® (N1023) is the trade name for a line of high ORAC blends of fruit powders and fruit extracts, exclusively available through FutureCeuticals.

VitaBerry® is a proprietary formula that combines wild bilberry and wild blueberry, cranberry, raspberry, strawberry, prune, cherry, and grape whole powders and extracts into lines of custom blends. High in fruit polyphenols, anthocyanins, proanthocyanins, ellagic acid, chlorogenic acid, resveratrol, and quinic acid, VitaBerry offers 6,000 ORAC units in a single gram.

VitaBerry® Plus (N81.3) combines the standard blend of VitaBerry® with resveratrol and quercetin to deliver a minimum of 12,000 ORAC units per gram.

Cranberry

Cranberries

HEALTH BENEFITS OF CRANBERRIES

Cranberries (Vaccinium macrocarpon) are native to the boggy regions of temperate and subalpine North America and Europe. Although Native Americans used them extensively, they were first cultivated in the U.S. in the early 19th century. Cranberries grow on viney plants belonging to the heath family Ericaceae that also includes blueberries, bilberries, huckleberries, and bearberries (Arctostaphylos uva ursi). Cranberries contain tannins, fiber, anthocyanins (and other flavonoids), and Vitamin C. Their tannins prevent bacteria from attaching to cells. Consequently, cranberries have been used against infections, including urinary tract infections. In addition, cranberries may be helpful in protecting against heart disease and stroke.

Cranberries are an especially good source of antioxidant polyphenols. In animal studies, the polyphenols in cranberries have been found to decrease levels of total cholesterol and so-called “bad” cholesterol. Cranberries may also inhibit the growth of tumors in human breast tissue and lower the risk of both stomach ulcers and gum disease. 

Here is a list of the antioxidant and anti-inflammatory phytonutrients in found in cranberries.

Type of Phytonutrient             Specific Molecules
Phenolic Acids                             hydroxybenzoic acids including vanillic acids;
—Phenolic Acids (cont.)             hydroxycinnamic acids inculding caffeic,
—Phenolic Acids (cont.)             coumaric, cinnamic, and ferulic acid
Proanthocyanidins                     epicatechins
Anthocyanins                              cyanidins, malvidins, and peonidins
Flavonoids                                   quercetin, myricetin, kaempferol
Triterpenoids                              ursolic acid

Other Cranberry Information

  • Cranberries hold significantly high amounts of phenolic flavonoid phytochemicals called oligomeric proanthocyanidins (OPC’s). Scientific studies have shown that consumption of the berries have potential health benefits against cancer, aging and neurological diseases, inflammation, diabetes, and bacterial infections.
  • Antioxidant compounds in cranberries including OPC’s, anthocyanidin flavonoids, cyanidin, peonidin and quercetin may prevent cardiovascular disease by counteracting against cholesterol plaque formation in the heart and blood vessels. Further, these compounds help the human body lower LDL cholesterol levels and increase HDL-good cholesterol levels in the blood.
  • Scientific studies show that cranberry juice consumption offers protection against gram-negative bacterial infections such as E.coli in the urinary system by inhibiting bacterial-attachment to the bladder and urethra.
  • In is known that cranberries turns urine acidic. This, together with the inhibition of bacterial adhesion helps prevent the formation of alkaline (calcium ammonium phosphate) stones in the urinary tract by working against proteus bacterial-infections.
  • In addition, the berries prevent plaque formation on the tooth enamel by interfering with the ability of the gram-negative bacterium, Streptococcus mutans, to stick to the surface. In this way cranberries helps prevent the development of cavities.
  • The berries are also good source of many vitamins like vitamin C, vitamin A, ß-carotene, lutein, zea-xanthin, and folate and minerals like potassium, and manganese.
  • Oxygen Radical Absorbance Capacity (ORAC) demonstrates cranberry at an ORAC score of 9584 µmol TE units per 100 g, one of the highest in the category of edible berries.

For more information on cranberries visit the sites given below:
https://www.healthambition.com/health-benefits-of-cranberry-juice/
or
http://www.whfoods.com/genpage.php?tname=foodspice&dbid=145

Scientific Studies on the Antioxidant Effects of Cranberry

Below, I provide relevant scientific studies on the antioxidant effects and potential health benefits of cranberries.

Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions.

Abstract

Cranberry fruit has been reported to have high antioxidant effectiveness that is potentially linked to its richness in diversified polyphenolic content. The aim of the present study was to determine the role of cranberry polyphenolic fractions in oxidative stress (OxS), inflammation and mitochondrial functions using intestinal Caco-2/15 cells. The combination of HPLC and UltraPerformance LC®-tandem quadrupole (UPLC-TQD) techniques allowed us to characterize the profile of low, medium and high molecular mass polyphenolic compounds in cranberry extracts. The medium molecular mass fraction was enriched with flavonoids and procyanidin dimers whereas procyanidin oligomers (DP > 4) were the dominant class of polyphenols in the high molecular mass fraction. Pre-incubation of Caco-2/15 cells with these cranberry extracts prevented iron/ascorbate-mediated lipid peroxidation and counteracted lipopolysaccharide-mediated inflammation as evidenced by the decrease in pro-inflammatory cytokines (TNF-α and interleukin-6), cyclo-oxygenase-2 and prostaglandin E2. Cranberry polyphenols (CP) fractions limited both nuclear factor κB activation and Nrf2 down-regulation. Consistently, cranberry procyanidins alleviated OxS-dependent mitochondrial dysfunctions as shown by the rise in ATP production and the up-regulation of Bcl-2, as well as the decline of protein expression of cytochrome c and apoptotic-inducing factor. These mitochondrial effects were associated with a significant stimulation of peroxisome-proliferator-activated receptor γ co-activator-1-α, a central inducing factor of mitochondrial biogenesis and transcriptional co-activator of numerous downstream mediators. Finally, cranberry procyanidins forestalled the effect of iron/ascorbate on the protein expression of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2). Our findings provide evidence for the capacity of CP to reduce intestinal OxS and inflammation while improving mitochondrial dysfunction.

 Chemical characterization and chemo-protective activity of cranberry phenolic powders in a model cell culture. Response of the antioxidant defenses and regulation of signaling pathways

Abstract

Oxidative stress and reactive oxygen species (ROS)-mediated cell damage are implicated in various chronic pathologies. Emerging studies show that polyphenols may act by increasing endogenous antioxidant defense potential. Cranberry has one of the highest polyphenol content among commonly consumed fruits. In this study, the hepato-protective activity of a cranberry juice (CJ) and cranberry extract (CE) powders against oxidative stress was screened using HepG2 cells, looking at ROS production, intracellular non-enzymatic and enzymatic antioxidant defenses by reduced glutathione concentration (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) activity and lipid peroxidation biomarker malondialdehyde (MDA). Involvement of major protein kinase signaling pathways was also evaluated. Both powders in basal conditions did not affect cell viability but decreased ROS production and increased GPx activity, conditions that may place the cells in favorable conditions against oxidative stress. Powder pre-treatment of HepG2 cells for 20 h significantly reduced cell damage induced by 400 μM tert-butylhydroperoxide (t-BOOH) for 2 h. Both powders (5–50 μg/ml) reduced t-BOOH-induced increase of MDA by 20% (CJ) and 25% (CE), and significantly reduced over-activated GPx and GR. CE, with a significantly higher amount of polyphenols than CJ, prevented a reduction in GSH and significantly reduced ROS production. CJ reversed the t-BOOH-induced increase in phospho-c-Jun N-terminal kinase. This study demonstrates that cranberry polyphenols may help protect liver cells against oxidative insult by modulating GSH concentration, ROS and MDA generation, antioxidant enzyme activity and cell signaling pathways.

Cranberry extract suppresses interleukin-8 secretion from stomach cells stimulated by Helicobacter pylori in every clinically separated strain but inhibits growth in part of the strains

From: http://www.sciencedirect.com/science/article/pii/S1756464613000364

Abstract

It is known that cranberry inhibits the growth of Helicobacter pylori (HP). In human stomach, HP basically induces chronic inflammation by stimulating stomach cells to secrete interleukin (IL)-8 and other inflammatory cytokines, and causes stomach cancer, etc. The aim of this study was to investigate the inhibiting effects of cranberry on HP growth and IL-8 secretion from stomach cells induced by HP, using clinically separated HP strains. HP growth in liquid culture and on-plate culture was evaluated by titration after 2-day incubation and by agar dilution technique, respectively. For IL-8 experiments, MKN-45, a stomach cancer cell line, was incubated with HP for 24 h and IL-8 in the medium was assayed by ELISA. Cranberry suppressed growth of the bacteria only in six of the 27 strains. Meanwhile, it suppressed IL-8 secretion in all the strains. The results may suggest a possible role of cranberry in prevention of stomach cancer by reducing gastric inflammation.

Effects of cranberry powder on biomarkers of oxidative stress and glucose control in db/db mice

From: http://www.ncbi.nlm.nih.gov/pubmed/24353827

Abstract

Increased oxidative stress in obese diabetes may have causal effects on diabetic complications, including dyslipidemia. Lipopolysccharides (LPS) along with an atherogenic diet have been found to increase oxidative stress and insulin resistance. Cranberry has been recognized as having beneficial effects on diseases related to oxidative stress. Therefore, we employed obese diabetic animals treated with an atherogenic diet and LPS, with the aim of examining the effects of cranberry powder (CP) on diabetic related metabolic conditions, including lipid profiles, serum insulin and glucose, and biomarkers of oxidative stress. Forty C57BL/KsJ-db/db mice were divided into the following five groups: normal diet + saline, atherogenic diet + saline, atherogenic diet + LPS, atherogenic diet + 5% CP + LPS, and atherogenic diet + 10% CP + LPS. Consumption of an atherogenic diet resulted in elevation of serum total cholesterol and atherogenic index (AI) and reduction of high density lipoprotein (HDL)-cholesterol. However, with 10% CP, the increase in mean HDL-cholesterol level was close to that of the group with a normal diet, whereas AI was maintained at a higher level than that of the group with a normal diet. LPS induced elevated serum insulin level was lowered by greater than 60% with CP (P < 0.05), and mean serum glucose level was reduced by approximately 19% with 5% CP (P > 0.05). Mean activity of liver cytosolic glutathione peroxidase was significantly increased by LPS injection, however it was reduced back to the value without LPS when the diet was fortified with 10% CP (P < 0.05). In groups with CP, a reduction in mean levels of serum protein carbonyl tended to occur in a dose dependent manner. Particularly with 10% CP, a reduction of approximately 89% was observed (P > 0.05). Overall results suggest that fortification of the atherogenic diet with CP may have potential health benefits for obese diabetes with high oxidative stress, by modulation of physical conditions, including some biomarkers of oxidative stress.

Ultimate Protector cranberry cranberries

SUMMARY

Cranberries are an important fruit full of polyphenols, anthocyanins, antioxidants, and Nrf2 activators that help to make Ultimate Protector such an outstanding nutritional supplement.

ADDITIONAL RESOURCES

 

Contact Us:

You can reach HPDI by calling 1-800-228-4265, email support(at)IntegratedHealth.com, or visit the retail website: www.IntegratedHealth.com

Health care professionals and retailers can apply for wholesale account, which includes access to the HPDI reseller website: www.HealthProductsDistributors.com

0

ULTIMATE PROTECTOR INGREDIENTS – STRAWBERRIES

Dr. Hank Liers, PhD biography about us HPDI integratedhealth formulator founder CEO scientist physicist strawberriesUltimate Protector™ contains freeze dried strawberries, as well as components from 29 different fruits, vegetables, and herbs. Each of these ingredients contain substances that may be considered to be polyphenols, antioxidants, and Nrf2 activators. In this article I explore the ingredient strawberries, which is a component of VitaBerry Plus® from Futureceuticals.

VITABERRY PLUS®

VitaBerry® (N1023) is the trade name for a line of high ORAC blends of fruit powders and fruit extracts, exclusively available through FutureCeuticals.

VitaBerry® is a proprietary formula that combines wild bilberry and wild blueberry, cranberry, raspberry, strawberry, prune, cherry, and grape whole powders and extracts into lines of custom blends. High in fruit polyphenols, anthocyanins, proanthocyanins, ellagic acid, chlorogenic acid, resveratrol, and quinic acid, VitaBerry offers 6,000 ORAC units in a single gram.

VitaBerry® Plus (N81.3) combines the standard blend of VitaBerry® with resveratrol and quercetin to deliver a minimum of 12,000 ORAC units per gram.

Strawberry strawberries

HEALTH BENEFITS OF STRAWBERRIES

Strawberries long have grown wild in the world’s temperate regions. They have been cultivated for several thousand years and were prized among the ancient Romans. Most of the common varieties of strawberry derive from a hybrid (Frangaria x ananassa). Strawberries have an ORAC value of 1,540, which is very high among the fruits and vegetables tested by the USDA. They are a good source of vitamins C, K, B2, B5, B6, and folate. They also contain appreciable amounts of the minerals manganese, iodine, and potassium, as well as dietary fiber.

Like other berries, the antioxidants contained in strawberries may be useful against diseases of the heart and arteries by preventing the oxidation of lipids. The phytonutrient phenols most abundant in strawberries are anthocyanins and ellagitannins. The anthocyanins help to prevent oxidative damage from free radicals in body. The unique phenol profile of the strawberry enables it not only to protect the heart, but also to fight inflammation. Studies have shown that strawberries also protect the brain from oxidative stress and may therefore reduce age-related cognitive decline in brain function. Strawberries have been shown to be Nrf2 activators that can stimulate the endogenous production of protective enzymes in the body.

Here is a list of the antioxidant and anti-inflammatory phytonutrients in found in strawberries.

  • Anthocyanins
    • cyanidins
    • pelargonidins
  • Flavonols
    • procyanidins
    • catechins
    • gallocatechins
    • epicatechins
    • kaempferol
    • quercetin
  • Hydroxy-benzoic acids
    • ellagic acid
    • gallic acid
    • vanillic acid*
    • salicylic acid
  • Hydroxy-cinnamic acids
    • cinnamic acid
    • coumaric acid
    • caffeic acid
    • ferulic acid
  • Tannins
    • ellagitannins
    • gallotannins
  • Stilbenes
    • resveratrol

For more information on strawberries visit: http://www.whfoods.com/genpage.php?tname=foodspice&dbid=32

Scientific Studies on the Antioxidant Effects of Strawberries

Below, I provide relevant scientific studies on the antioxidant effects and potential health benefits of strawberries.

Strawberry as a functional food: an evidence-based review

From: http://www.ncbi.nlm.nih.gov/pubmed/24345049

Abstract

Emerging research provides substantial evidence to classify strawberries as a functional food with several preventive and therapeutic health benefits. Strawberries, a rich source of phytochemicals (ellagic acid, anthocyanins, quercetin, and catechin) and vitamins (ascorbic acid and folic acid), have been highly ranked among dietary sources of polyphenols and antioxidant capacity. It should however be noted that these bioactive factors can be significantly affected by differences in strawberry cultivars, agricultural practices, storage, and processing methods: freezing versus dry heat has been associated with maximum retention of strawberry bioactives in several studies. Nutritional epidemiology shows inverse association between strawberry consumption and incidence of hypertension or serum C-reactive protein; controlled feeding studies have identified the ability of strawberries to attenuate high-fat diet induced postprandial oxidative stress and inflammation, or postprandial hyperglycemia, or hyperlipidemia in subjects with cardiovascular risk factors. Mechanistic studies have elucidated specific biochemical pathways that might confer these protective effects of strawberries: upregulation of endothelial nitric oxide synthase (eNOS) activity, downregulation of NF-kB activity and subsequent inflammation, or inhibitions of carbohydrate digestive enzymes. These health effects may be attributed to the synergistic effects of nutrients and phytochemicals in strawberries. Further studies are needed to define the optimal dose and duration of strawberry intake in affecting levels of biomarkers or pathways related to chronic diseases.

Bioactive Compounds and Antioxidant Activity in Different Types of Berries

Abstract

Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

Dietary intakes of berries and flavonoids in relation to cognitive decline

From: http://www.ncbi.nlm.nih.gov/pubmed/22535616

Abstract

Objective: Berries are high in flavonoids, especially anthocyanidins, and improve cognition in experimental studies. We prospectively evaluated whether greater long-term intakes of berries and flavonoids are associated with slower rates of cognitive decline in older women.

Methods: Beginning in 1980, a semiquantitative food frequency questionnaire was administered every 4 years to Nurses’ Health Study participants. In 1995–2001, we began measuring cognitive function in 16,010 participants, aged ≥70 years; follow-up assessments were conducted twice, at 2-year intervals. To ascertain long-term diet, we averaged dietary variables from 1980 through the initial cognitive interview. Using multivariate-adjusted, mixed linear regression, we estimated mean differences in slopes of cognitive decline by long-term berry and flavonoid intakes.

Results: Greater intakes of blueberries and strawberries were associated with slower rates of cognitive decline (eg, for a global score averaging all 6 cognitive tests, for blueberries: p-trend = 0.014 and mean difference = 0.04, 95% confidence interval [CI] = 0.01–0.07, comparing extreme categories of intake; for strawberries: p-trend = 0.022 and mean difference = 0.03, 95% CI = 0.00–0.06, comparing extreme categories of intake), after adjusting for multiple potential confounders. These effect estimates were equivalent to those we found for approximately 1.5 to 2.5 years of age in our cohort, indicating that berry intake appears to delay cognitive aging by up to 2.5 years. Additionally, in further supporting evidence, greater intakes of anthocyanidins and total flavonoids were associated with slower rates of cognitive decline (p-trends = 0.015 and 0.053, respectively, for the global score).

Interpretation: Higher intake of flavonoids, particularly from berries, appears to reduce rates of cognitive decline in older adults.

Addition of strawberries to the usual diet decreases resting chemiluminescence of fasting blood in healthy subjects-possible health-promoting effect of these fruits consumption

From: http://www.ncbi.nlm.nih.gov/pubmed/24912053

Abstract

OBJECTIVE: Regular strawberry consumption augmented plasma antioxidant activity and decreased lipid peroxidation suggests preventive potential of these fruits against oxidative stress-dependent disorders. Blood phagocytes are important source of oxidants that may contribute to systemic oxidative stress. We examined the effect of strawberry consumption on the luminol enhanced whole blood chemiluminescence (LBCL) reflecting oxidants generation by circulating phagocytes in healthy subjects.

METHODS: Thirty-one healthy subjects (being on their usual diet) consumed 500 g of strawberry pulp daily (between 11.00-14.00) for 30 days (1st strawberry course) and after 10 day wash-out the cycle was repeated (2nd strawberry course). Fasting blood and spot morning urine samples were collected before and after each strawberry course for measuring resting and agonist (fMLP)-induced LBCL, various phenolics and plasma antioxidant activity. Twenty subjects served as a control in respect to LBCL changes over the study period.

RESULTS: Strawberry consumption decreased median resting LBCL and this effect was more evident after the 1st course (by 38.2%, p < 0.05) than after the the 2nd one (18.7%), while fMLP-induced LBCL was constant. No changes in LBCL were noted in controls. Strawberries increased fasting plasma levels of caffeic acid and homovanillic acid as well as urolithin A and 4-hydroxyhippuric acid in spot urine. Plasma antioxidant activity and the number of circulating phagocytes did not change over the study period. Resting LBCL correlated positively with the number of circulating polymorphonuclear leukocytes at all occasions and negative correlation with plasma 4-hydroxyhippuric acid was noted especially after the first strawberry course (r = -0.46, p < 0.05).

CONCLUSIONS: The decrease in resting LBCL suggests that regular strawberry consumption may suppress baseline formation of oxidants by circulating phagocytes. This may decrease the risk of systemic imbalance between oxidants and anti-oxidants and be one of mechanisms of health-promoting effect of these fruits consumption.

Consumption of strawberries on a daily basis increases the non-urate 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity of fasting plasma in healthy subjects

From: http://www.ncbi.nlm.nih.gov/pubmed/25120279

Abstract

Strawberries contain anthocyanins and ellagitanins which have antioxidant properties. We determined whether the consumption of strawberries increase the plasma antioxidant activity measured as the ability to decompose 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in healthy subjects. The study involved 10 volunteers (age 41 ± 6 years, body weight 74.4 ± 12.7 kg) that consumed 500 g of strawberries daily for 9 days and 7 matched controls. Fasting plasma and spot morning urine samples were collected at baseline, during fruit consumption and after a 6 day wash-out period. DPPH decomposition was measured in both deproteinized native plasma specimens and pretreated with uricase (non-urate plasma). Twelve phenolics were determined with HPLC. Strawberries had no effect on the antioxidant activity of native plasma and circulating phenolics. Non-urate plasma DPPH decomposition increased from 5.7 ± 0.6% to 6.6 ± 0.6%, 6.5 ± 1.0% and 6.3 ± 1.4% after 3, 6 and 9 days of supplementation, respectively. The wash-out period reversed this activity back to 5.7 ± 0.8% (p<0.01). Control subjects did not reveal any changes of plasma antioxidant activity. Significant increase in urinary urolithin A and 4-hydroxyhippuric (by 8.7- and 5.9-times after 6 days of supplementation with fruits) was noted. Strawberry consumption can increase the non-urate plasma antioxidant activity which, in turn, may decrease the risk of systemic oxidants overactivity.

One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans

From: http://www.ncbi.nlm.nih.gov/pubmed/24406274

Abstract

Strawberries are an important fruit in the Mediterranean diet because of their high content of essential nutrients and beneficial phytochemicals, which seem to exert beneficial effects in human health. Healthy volunteers were supplemented daily with 500 g of strawberries for 1 month. Plasma lipid profile, circulating and cellular markers of antioxidant status, oxidative stress and platelet function were evaluated at baseline, after 30 days of strawberry consumption and 15 days after the end of the study. A high concentration of vitamin C and anthocyanins was found in the fruits. Strawberry consumption beneficially influenced the lipid profile by significantly reducing total cholesterol, low-density lipoprotein cholesterol and triglycerides levels (-8.78%, -13.72% and -20.80%, respectively; P<.05) compared with baseline period, while high-density lipoprotein cholesterol remained unchanged. Strawberry supplementation also significant decreased serum malondialdehyde, urinary 8-OHdG and isoprostanes levels (-31.40%, -29.67%, -27.90%, respectively; P<.05). All the parameters returned to baseline values after the washout period. A significant increase in plasma total antioxidant capacity measured by both ferric reducing ability of plasma and oxygen radical absorbance capacity assays and vitamin C levels (+24.97%, +41.18%, +41.36%, respectively; P<.05) was observed after strawberry consumption. Moreover, the spontaneous and oxidative hemolysis were significant reduced (-31.7% and -39.03%, respectively; P<.05), compared to the baseline point, which remained stable after the washout period. Finally, strawberry intake significant decrease (P<.05) the number of activated platelets, compared to both baseline and washout values. Strawberries consumption improves plasma lipids profile, biomarkers of antioxidant status, antihemolytic defenses and platelet function in healthy subjects, encouraging further evaluation on a population with higher cardiovascular disease risk.

Impact of strawberries on human health: insight into marginally discussed bioactive compounds for the Mediterranean diet

Abstract

OBJECTIVE: To review and update the current knowledge on the potential impact of strawberry on human health, with particular attention on compounds and indirect mechanisms of action not exhaustively considered.

DESIGN: Personal perspectives and recent data.

SETTING: International.

RESULTS: Our research group was among the few groups that have recently investigated the folate content in fresh, stored and processed strawberries, and the data look very promising. As well, some in vivo evidence of the impact of strawberry intake on the folate status in humans have already been reported, but a new increasing interest on this field is strongly hoped. Furthermore, the hypouricaemic effects previously ascribed to cherry consumption need to be evaluated in respect to strawberry intake. At the moment, inconsistent results come from the few investigations designed at this proposal. In our studies, a great interindividual variability was observed on plasma urate levels in response to strawberry intake, suggesting a putative effect.

CONCLUSIONS: The mechanisms responsible for the potential health-promoting effects of strawberry may not be necessarily searched in the activity of phytochemicals. Particularly, a greater interest should be addressed to show whether a prolonged strawberry consumption may effectively improve the folate status and reduce the incidence of folate-related pathological conditions. Furthermore, the hypouricaemic effects of cherries need to be evaluated also in respect to strawberry intake, and the mechanisms of actions and anti-gout potentialities need to be studied in detail. Future investigations involving human trials should be aimed at following these underestimated scientific tracks.

strawberry strawberries fruit

SUMMARY

Strawberries are an important fruit full of polyphenols, anthocyanins, antioxidants, and Nrf2 activators that help to make Ultimate Protector such an outstanding nutritional supplement.

 

Contact Us:

You can reach HPDI by calling 1-800-228-4265, email support(at)IntegratedHealth.com, or visit the retail website: www.IntegratedHealth.com

Health care professionals and retailers can apply for wholesale account, which includes access to the HPDI reseller website: www.HealthProductsDistributors.com