0

AMAZING IMMUNE-ASSIST™ MUSHROOM FORMULA

Dr. Hank Liers, PhD Immune-Assist™ medicinal mushroom extracts

HPDI’s amazing IMMUNE-ASSIST™ mushroom formula is a combination of more than 200 different polysaccharides, derived from the enzymatic breakdown of complex organic plant material from six different species of organically grown medicinal mushrooms. These include Agaricus blazei, Cordyceps hybrid (sinensis and militaris), Lentinula edodes (shiitake)Grifola frondosa (maitake)Ganoderma lucidum (Reishi), and Coriolus versicolor.

IMMUNE-ASSIST™ Daily Formula contains simple polysaccharides similar to many other products on the market, but it also contains much more complex polysaccharides like the cross-linked beta mannans and beta-glucans into the same molecule. This is why Immune-Assist™ shows such a greater range of immuno-modulation bioactivity than other bran based supplements. Included among the important substances in Immune-Assist™ are Arabinoxylane, Lentinan, Grifolan (Dr. Nanba’s original Maitake D-Fraction), PSK and PSP, and Active Hemicellulose Correlated Compound (AHCC).

Many mushroom-derived polysaccharides appear to fit the accepted criteria for immunomodulators or biological response modifiers (BRM) compounds. They cause no harm and place no additional stress on the body, they assist the body to adapt to the various environmental and psychological stresses, and they have a non-specific action on the body, supporting all the major systems, including nervous, hormonal, and immune systems, as well as regulatory functions.

MEDICINAL MUSHROOM EXTRACTS: ONE OF THE MOST POWERFUL IMMUNE MODULATORS KNOWN

Recent scientific research has shown that medicinal mushrooms grown on vegetable sources (such as millet, rice bran, buckwheat, milo, etc.) enzymatically activate a process whereby complex cross-linked polysaccharides from the vegetable sources are converted to biologically active immunomodulators. As you will see from the discussion below, the polysaccharides produced by this process are effective and safe immune stimulants.

Medicinal mushroom research has focused on discovering compounds that can modulate positively or negatively the biological response of immune cells. Certain mushroom derived-glucans and polysaccharide-bound proteins have been shown to act as immunomodulators, where these polymers interact with the immune system to upregulate or downregulate specific aspects of the responses of the host and this may result in various therapeutic effects.

Whether certain compounds enhance or suppress immune responses can depend on a number of factors including dosage, route of administration, timing and frequency of administration, mechanism of action or the site of activity.

The most effective polysaccharides isolated from mushrooms (fruit-body, submerged, cultured mycelial biomass or liquid culture broth) are either water-soluble β-D-glucans, β-D-glucans with heterosaccharide chains of xylose, mannose, galactose, or uronic acid or β-D-glucan-protein complexes – proteoglycans.

While the role of medicinal mushrooms in immunomodulation represents the central theme of much of the conducted research, it is pertinent to observe that many of the medicinal mushrooms have been highly valued for other medicinal properties including cholesterols control, blood pressure support, blood sugar support, assistance with viral and bacterial balance, and antioxidant and free radical scavenging.

The safety criteria for mushroom-derived β-glucans have been exhaustively carried out in pre-clinical experiments. Acute, subacute, and chronic toxicity tests have been carried out together with administration during pregnancy and lactation with no adverse effects. There were no anaphylactic reactions and no effects in mutagenicity and haemolysis tests, blood coagulation and a wide range of other regulatory tests. There was no evidence of genotoxicity. Similar results have been obtained with other β-glucans. When applied to humans in Phase 1 clinical tests, the β-glucans demonstrate remarkably few adverse clinical reactions.

In the 2001 report Medicinal Mushrooms: Their Therapeutic Properties and Current Medical Usage, a wide variety of mushroom polysaccharides, including Lentinan (from L. edodes), Schizophyllan (from S. commune), PSK and PSP (from Trametes versicolor), and Grifron-D (from the Maitake mushroom G. frondosa) and others are described, and their properties are shown to satisfy the criteria for biological response modifiers. Many of these mushroom-derived polymers potentiate the host’s innate (non-specific) and acquired (specific) immune responses in a similar manner, where they activate many kinds of immune cells that are vitally important for the maintenance of homeostasis.

Key innate responses that are stimulated by these mushroom derived-β-glucans or polysaccharide-protein complexes include host T-cells (such as cytotoxic macrophages, monocytes, neutrophils, natural killer cells, and dendritic cells) and chemical messengers (cytokines such as interleukins, interferon and colony stimulating factors) that trigger complement and acute phase responses. Moreover, mushroom polysaccharides or polysaccharide-protein complexes are considered as multi-cytokine inducers that are able to induce gene expression of various immunomodulatory cytokines and cytokine receptors.

In addition, acquired responses are also enlisted, where lymphocytes that govern antibody production (B cells) and cell-mediated cytotoxicity (T-cells) are stimulated. While the immune system is shrouded in tremendous complexity, our current understanding shows that it is regulated in an orchestrated dynamic manner.

Mushroom-derived polysaccharides have shown therapeutic activities in both pre-clinical models and in clinical trials. Although the mechanism of their action is still not completely clear, Lentinan, Schizophyllan, PSP, PSK and other mushroom polysaccharides appear to mediate their activity by activation or augmentation of the host’s immune system (via stimulated cytotoxic macrophages, cytotoxic T-cells and antibody-mediated cytoxicity of targeted cells), rather than direct cytotoxicity.

Thus, both cell-mediated immune responses against the target T-cells initiated by macrophage-lymphocyte interactions and cytoxicity induced by antibodies to target T-cells are believed to contribute to the elimination of abnormal cells. Recent evidence suggests that several mushroom polysaccharides may also possess cytotoxic properties. Grifron-D from G. fondosa mushroom was reported to induce apoptosis (programmed cell death) in human prostate cell-lines.

IMMUNE-ASSIST™ DAILY FORMULA INCORPORATES POLYSACCHARIDE EXTRACTS FROM SIX MEDICINAL MUSHROOMS

In China, Japan, Korea, and more recently in the USA, hundreds of mushroom species have been studied during the past 30 years. Extracts from most of the medicinal mushrooms show a common property of enhancing immune function by modulating cell-mediated immunity. Simply put, such mushroom extracts seem to turn on cells in the immune system, which appear to have significant healing properties. In fact, three different drugs extracted from mushrooms have been approved by the Japanese equivalent of FDA (that is, the Japanese Health and Welfare Ministry). These three are lentinan, derived from shiitake; PSK, derived from coriolus versicolor; and schizophyllan, derived from suehirotake.

Based on the latest research a USA-based company (Aloha Medicinals, Inc.) has formulated for Health Products Distributors, Inc. IMMUNE-ASSIST™ Daily Formula. This formula contains more than 200 different polysaccharides, derived from the enzymatic breakdown of complex organic plant material from six different species of medicinal mushrooms. These include Agaricus blazei, Cordyceps hybrid (sinensis and militaris), Lentinula edodes (shiitake)Grifola frondosa (maitake)Ganoderma lucidum (Reishi), and Coriolus versicolor.

Immune-Assist™ Medicinal Mushrooms

RESEARCH RELATED TO MUSHROOMS CONTAINED IN IMMUNE-ASSIST™

Shiitake is now the most popular and most cultivated exotic mushroom in the world. In China, shiitake has a history that dates back to the Ming Dynasty (1368–1644 ACE). The mushroom was used not only as a food but was taken as a remedy for upper respiratory diseases, poor blood circulation, liver trouble, exhaustion and weakness, and to boost chi, or life energy. It was also believed to prevent premature aging.

Coriolus (or Trametes) versicolor is the most thoroughly clinically researched mushroom. An extract of Coriolus versicolor known as PSK is sold in Europe and Japan. It is an immunostimulant; demonstrates anti-viral activity; enhances T-cell proliferation; and has been shown to improve both disease-free and survival rates in patients.

Maitake may be even more potent than any of the other mushrooms previously studied. This legendary giant mushroom has been studied for its anti neoplastic, anti-diabetic, anti-hypertensive, and anti-hyperlipemic effects since the mid-1980s. Its anti-HIV activity in vitro was demonstrated in tests conducted by the Japan Institute of Health and the US National Cancer Institute in early 1992. Among various extracts obtained from the Maitake mushroom, a specific extracted fraction named Maitake D-fraction is the active constituent. This extract contains beta-1, 3-glucans and beta-1, 6-glucans protein-bound polysaccharides. It has demonstrated remarkable cell-protective activity by activating the immune system through oral administration.

The Chinese have long used Cordyceps sinensis and militaris to promote overall good health, and modern research indicates that it does indeed support liver, kidney, heart, and immune system function. Cordyceps has been used to protect the bone marrow and digestive systems of mice from whole body irradiation. One experiment noted that Cordyceps may protect the liver. An experiment with mice indicated the mushroom may have an anti-depressant effect.

Researchers have observed that Cordyceps has a hypoglycemic effect and may be beneficial for people with insulin resistance. Cordyceps mushroom extracts have been shown to stimulate the number of T helper cells, prolong the survival of lymphocytes, enhance TNF-alpha and interleukin 1 production, and increase the activity of natural killer cells. One study indicates that cordyceps can stimulate progesterone production in animal cells.

Reishi possess immunomodulary and immunotherapeutic activities supported by studies on polysaccharides, terpene, and other bioactive compounds isolated from fruiting bodies and mycelia of this fungus. It has also been found to inhibit platelet aggregation, and to lower blood pressure (via inhibition of angiotensin-converting enzyme), cholesterol, and blood sugar.

In an animal model, Reishi has been reported to prevent metastasis, with potency comparable to Lentinan from shiitake mushrooms. The mechanisms by which Reishi may target different stages of abnormal growth development include: 1) inhibition of angiogenesis (formation of new blood vessels created to supply nutrients to the abnormal cell) mediated by cytokines, 2) cytotoxicity, 3) inhibition of migration of the cells and 4) inducing and enhancing apoptosis. Besides effects on mammalian physiology, Reishiis reported to have anti-bacterial and anti-viral activities. Reishi is reported to exhibit direct anti-viral effects with the following viruses: HSV-1, HSV-2, and influenza.

Agaricus blazei is an edible mushroom native to Brazil and cultivated in Japan and the USA for its medicinal uses. It has been used to treat arteriosclerosis, hepatitis, hyperlipidemia, diabetes, dermatitis, and neoplasms. In vitro experiments and studies done in mice have shown that Agaricus has immunomodulatory and antimutagenic properties. The polysaccharides and anti-angiogenic compounds present in Agaricus are thought to be responsible for its therapeutic properties. Such effects are believed to be exerted by immunopotentiation or direct inhibition of angiogenesis.

ACTIVE HEMICELLULOSE CORRELATED COMPOUND (AHCC) AS A COMPONENT OF IMMUNE-ASSIST™ DAILY FORMULA

AHCC is produced by from the enzymatic action of vegetable sources with mycelial extracts from several different mushrooms. There is about four times more AHCC in each dose of Immune-Assist™ than there is in other AHCC products on the market.

AHCC is a food substance that contains a broad range of polysaccharides. It is believed that a special polysaccharide with a molecular weight of about 5,000 and an alpha 1,4 glucan linkage in this mushroom extract is primarily responsible for the powerful immune enhancing effects on natural killer cells. A heavier polysaccharide in the extract appears to have a powerful stimulating effect on macrophages which, in turn, further stimulates the immune system including a number of cytokines (Interleukin-2, Interleukin-12, TNF, and Interferon). Furthermore, some research has indicated that components of AHCC may have direct cytotoxic effects on unhealthy cells.

NATURAL KILLER CELLS

The human immune system is comprised of more than 130 subsets of white blood cells. Natural Killer (NK) cells make up roughly 15% of all human white blood cells. They provide the first line of defense for dealing with any form of invasion to the body. Each NK cell contains several small granules that act as chemical destroyers. Once an NK cell has recognized an unwanted cell, for example, it attaches itself to the cell’s outer membrane and injects these granules directly into the interior of the cell. The granules then destroy the cell within five minutes. The undamaged NK cell then moves on to other cells and repeats the process. When the immune system is particularly strong, active NK cells will often take on more than one cell or other infected cells at the same time.

NK CELL ACTIVITY, NOT NUMBER, DETERMINES THE STRENGTH OF THE IMMUNE SYSTEM

Unlike other white blood cells, inadequate numbers of NK cells are very rarely a problem. Instead, it is the activity of the cells that generally determines whether one is sick or healthy. As long as the NK cells are active, everything remains under control. If NK cells lose their ability to either recognize or destroy the invader, however, the situation can deteriorate rapidly. In many patients with serious health conditions, NK cell activity is probably the primary criteria for estimating the chances of survival. It is commonly accepted that when NK cells cease to function, the end is near.

In addition, research has now confirmed that individuals with low NK cell activity are significantly more susceptible to autoimmune diseases, chronic fatigue syndrome, viral infections and the development of abnormal growths.

Doctors can test NK cell activity with a test called the NK cell function test. Basically, a blood sample is taken from the patient and placed in a vial containing appropriate live cells. After four hours, a count is taken to determine what percentage of the cells have been destroyed by the NK cells. The higher the percentage, the more active the cells. This test is referred to as the four hour Chromium-release assay. Your doctor can order the test from Immune Sciences Lab in Beverly Hills, CA at (310) 657-1077.

HOW IMMUNE-ASSIST™ DAILY FORMULA INCREASES NK CELL ACTIVITY AND IMMUNITY

The capacity of Immune-Assist™ to boost NK activity and overall immunity appears to stem from the following:

1) It increases the number of explosive granules in NK cells. The more granules an NK cell carries, the more unhealthy cells it can destroy.

2) Oral ingestion can increase NK activity as much as 300% (or even higher).

3) It increases interferon (IFN) levels. Interferon is another potent compound produced by the body that both inhibits the replication of viruses and other parasites and increases NK cell activity.

4) It increases the formation of TNFs. TNFs are a group of proteins that help destroy unwanted cells.

5) It increases number and the activity of other lymphocytes, especially T-cells (up to 200%) and macrophages.

6) It stimulates cytokine (IL-2, IL-12, TNF, and IFN) production, which stimulates immune function.

SUPPLEMENT FACTS

COMPOSITION: Two vegetarian capsules provide the following percentage of the Daily Value:

NUTRIENT AMOUNT % Daily Value
Proprietary Beta-Glucan complex plus nucleosides and other bioactive compounds extracted from six well-known, organically grown medicinal mushrooms: Agaricus blazei, Cordyceps sinensis and Cordyceps militaris, Lentinula edodes, Grifola frondosa, Ganoderma lucidum, and Coriolus versicolor. 1,000 mg *

* No established Daily Value

USAGE

DIRECTIONS: As a dietary supplement take two capsules per day in divided doses, or as recommended by a health care professional. In severe conditions, we suggest six (6) capsules per day for two weeks to build up immune activity, then maintaining a dosage of two (2) capsules per day. Alternatively, Immune-Assist™ can be taken at the time of exposure or first signs of illness, in which case we recommend taking two caps three times per day.

INGREDIENTS: IMMUNE-ASSIST™ contains a proprietary organic grown blend grown on organic white milo (growing substrate) and veggie capsule.

IMMUNE-ASSIST™ does not contain: wheat, rye, oats, corn, barley, gluten, soy, egg, dairy, yeast, GMOs, sugar, wax, preservatives, colorings, or artificial flavorings.

REFERENCES

1) Healing Mushrooms by Dr. Georges Halpern, MD, PhD, 2007.

2) Medicinal Mushrooms: Their Therapeutic Properties and Current Medical Usage with Special Emphasis on Cancer Treatments. Smith, Rowan and Sullivan, 2001.

3) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides (PDF 269 kb). A peer-reviewed article by Dr. Solomon Wasser of University of Haifa, Israel, 2002.

0

VITAMIN B12: THE NEGLECTED NUTRIENT

Dr. Hank Liers, PhD vitamin B12 B-12 cobalamin methylcobalaminI previously wrote METHYLATION CYCLE, GENETICS, B VITAMINS in which I considered in-depth how the Methylation Cycle functions, how genetics affect metabolic pathways, and how B vitamins (including vitamin B12, folate, vitamin B6, and vitamin B2) are used in Methylation Cycle pathways. In today’s article, I take an in-depth view of what you need to know about vitamin B12, including the effects of not having sufficient amounts of Vitamin B12 in the body.

Vitamin B12 is one of eight B vitamins. It is the largest and most structurally complicated vitamin. It consists of a class of chemically related compounds (vitamers), all of which show physiological activity. It contains the biochemically rare element cobalt positioned in the center of a chemical ring structure.

Vitamin B12 (also called cobalamin) is a water-soluble vitamin that is involved in the metabolism of every cell of the human body. It is a cofactor in DNA synthesis, and in both fatty acid and amino acid metabolism. It is particularly important in the normal functioning of the nervous system via its role in the synthesis of myelin and in the maturation of developing red blood cells in the bone marrow.

vitamin B12

Vitamin B12 contains the biochemically rare element cobalt positioned in the center of a chemical ring structure.

YOUR NEED FOR VITAMIN B12

Vitamin B12 deficiency is thought to be one of the leading nutritional deficiencies in the world. An extensive 2004 study showed that deficiency is a major health concern in many parts of the world, including the North America, Central and South America, India, and certain areas in Africa. It is estimated that 40 percent of people may have low levels of vitamin B12.

Vitamin B12 affects your mood, energy level, memory, nervous system, heart, skin, hair, digestion and more. It is a key nutrient regarding adrenal fatigue and multiple metabolic functions including enzyme production, DNA synthesis, and hormonal balance.

Because of vitamin B12’s extensive roles within the body, a vitamin deficiency can show up in many different symptoms, such as chronic fatigue, mood disorders such as depression, chronic stress, and low energy.

SOURCES OF VITAMIN B12

The only organisms to produce vitamin B12 are certain bacteria and archaea. Some of these bacteria are found in the soil around the grasses that ruminants eat. They are taken into the animal, proliferate, form part of their gut flora, and continue to produce vitamin B12.

Products of animal origin such as beef (especially liver), chicken, pork, eggs, dairy, clams, and fish constitute the primary food source of vitamin B12. Older individuals and vegans are advised to use vitamin B12 fortified foods and supplements to meet their needs.

vitamin B12 salmon

Salmon is a good source of Vitamin B12

Commercially, Vitamin B12 is prepared by bacterial fermentation. Fermentation by a variety of microorganisms yields a mixture of methylcobalamin, hydroxocobalamin, and adenosylcobalamin. Since multiple species of propionibacterium produce no exotoxins or endotoxins and have been granted GRAS status (generally regarded as safe) by the United States Food and Drug Administration, they are the preferred bacterial fermentation organisms for vitamin B12 production.

Methylcobalamin and 5-deoxyadenosylcobalamin are the forms of vitamin B12 used in the human body (called coenzyme forms). The form of cobalamin used in many some nutritional supplements and fortified foods, cyanocobalamin, is readily converted to 5-deoxyadenosylcobalamin and methylcobalamin in the body.

Hydroxocobalamin is the direct precursor of methylcobalamin and 5-deoxyadenosylcobalamin. In mammals, cobalamin is a cofactor for only two enzymes, methionine synthase (MS) and L-methylmalonyl-coenzyme A mutase (MUT).

Unlike most other vitamins, B12 is stored in substantial amounts, mainly in the liver, until it is needed by the body. If a person stops consuming the vitamin, the body’s stores of this vitamin usually take about 3 to 5 years to exhaust. Vitamin B12 is primarily stored in the liver as 5-deoxyadenosylcobalamin, but is easily converted to methylcobalamin.

ABSORPTION OF VITAMIN B12

Vitamin B12, bound to protein in food, is released by the activity of hydrochloric acid and gastric protease in the stomach. Intestinal absorption of vitamin B12 requires successively three different protein molecules: Haptocorrin, Intrinsic Factor and Transcobalamin II. If there are deficiencies in any of these factors absorption of Vitamin B12 can be seriously decreased.

When vitamin B12 is added to fortified foods and dietary supplements, it is already in free form and, thus, does not require the separation from food protein step. Free vitamin B12 then combines with intrinsic factor, a glycoprotein secreted by the stomach’s parietal cells, and the resulting complex undergoes absorption within the distal ileum by receptor-mediated endocytosis.

Approximately 56% of a 1 mcg oral dose of vitamin B12 is absorbed, but absorption decreases drastically when the capacity of intrinsic factor is exceeded (at 1–2 mcg of vitamin B12).

Vitamin B12 – 5 mg methylcobalamin sublingual lozenge

Vitamin B12 – 5 mg Methylcobalamin sublingual lozenge.

VITAMIN B12 DEFICIENCY

Vitamin B12 deficiency can be difficult to detect, especially since the symptoms of a vitamin B12 deficiency can be similar to many common symptoms, such as feeling tired or unfocused, experienced by people for a variety of reasons.

Vitamin B12 deficiency is commonly associated with chronic stomach inflammation, which may contribute to an autoimmune vitamin B12 malabsorption syndrome called pernicious anemia and to a food-bound vitamin B12 malabsorption syndrome. Poor absorption of vitamin may be related to coeliac disease. Impairment of vitamin B12 absorption can cause megaloblastic anemia and neurologic disorders in deficient subjects. In some cases, permanent damage can be caused to the body when B12 amounts are deficient.

It is noteworthy that normal function of the digestive system required for food-bound vitamin B12 absorption is commonly impaired in individuals over 60 years of age, placing them at risk for vitamin B12 deficiency.

A diagnosis of vitamin B12 deficiency is typically based on the measurement of serum vitamin B12 levels within the blood. However, studies show that about 50 percent of patients with diseases related to vitamin B12 deficiency have normal B12 levels when tested. This can cause individuals to ignore taking in adequate levels of vitamin B12 with potential serious consequences.

FUNCTIONS AND ISSUES ASSOCIATED WITH VITAMIN B12 STATUS IN THE BODY

  • Vitamin B12 or cobalamin plays essential roles in folate metabolism and in the synthesis of the citric acid cycle intermediate, succinyl-CoA.
  • Vitamin B12 deficiency is commonly associated with chronic stomach inflammation, which may contribute to an autoimmune vitamin B12 malabsorption syndrome called pernicious anemia and to a food-bound vitamin B12 malabsorption syndrome. Impairment of vitamin B12 absorption can cause megaloblastic anemia and neurologic disorders in deficient subjects.
  • Normal function of the digestive system required for food-bound vitamin B12 absorption is commonly impaired in individuals over 60 years of age, placing them at risk for vitamin B12 deficiency.
  • Vitamin B12 and folate are important for homocysteine metabolism. Elevated homocysteine levels in blood are a risk factor for cardiovascular disease (CVD). B vitamin supplementation has been proven effective to control homocysteine levels.
  • The preservation of DNA integrity is dependent on folate and vitamin B12 availability. Poor vitamin B12 status has been linked to increased risk of breast cancer in some, but not all, observational studies.
  • Low maternal vitamin B12 status has been associated with an increased risk of neural tube defects (NTD), but it is not known whether vitamin B12 supplementation could help reduce the risk of NTD.
  • Vitamin B12 is essential for the preservation of the myelin sheath around neurons and for the synthesis of neurotransmitters. A severe vitamin B12 deficiency may damage nerves, causing tingling or loss of sensation in the hands and feet, muscle weakness, loss of reflexes, difficulty walking, confusion, and dementia.
  • While hyperhomocysteinemia may increase the risk of cognitive impairment, it is not clear whether vitamin B12 deficiency contributes to the risk of dementia in the elderly. Although B-vitamin supplementation lowers homocysteine levels in older subjects, the long-term benefit is not yet known.
  • Both depression and osteoporosis have been linked to diminished vitamin B12 status and high homocysteine levels.
  • The long-term use of certain medications, such as inhibitors of stomach acid secretion, can adversely affect vitamin B12 absorption.
  • Vitamin B12 is required for proper red blood cell formation, neurological function, and DNA synthesis.

MORE DETAILS ASSOCIATED WITH VITAMIN B12 STATUS IN THE BODY

1. Vitamin B12 is required for proper red blood cell formation, neurological function, and DNA synthesis. Vitamin B12 as methylcobalamin functions as a cofactor for methionine synthase. Methionine synthase (MS) catalyzes the conversion of homocysteine to methionine. Methionine along with ATP is required for the formation of S-adenosylmethionine (SAMe), a universal methyl donor for almost 100 different substrates, including DNA, RNA, hormones, proteins, and lipids.
2. Vitamin B12 as 5-deoxyadenosylcobalamin functions as a cofactor along with L-methylmalonyl-CoA mutase (MUT) to convert L-methylmalonyl-CoA to succinyl-CoA in the degradation of propionate, an essential biochemical reaction in fat and protein metabolism. Succinyl-CoA is also required for hemoglobin synthesis.
Metabolic Pathway

 

3. Vitamin B12, bound to protein in food, is released by the activity of hydrochloric acid and gastric protease in the stomach. When synthetic vitamin B12 is added to fortified foods and dietary supplements, it is already in free form and, thus, does not require this separation step. Free vitamin B12 then combines with intrinsic factor, a glycoprotein secreted by the stomach’s parietal cells, and the resulting complex undergoes absorption within the distal ileum by receptor-mediated endocytosis. Approximately 56% of a 1 mcg oral dose of vitamin B12 is absorbed, but absorption decreases drastically when the capacity of intrinsic factor is exceeded (at 1–2 mcg of vitamin B12).

4. Pernicious anemia is an autoimmune disease that affects the gastric mucosa and results in gastric atrophy. This leads to the destruction of parietal cells, achlorhydria, and failure to produce intrinsic factor, resulting in vitamin B12 malabsorption. If pernicious anemia is left untreated, it causes vitamin B12 deficiency, leading to megaloblastic anemia and neurological disorders, even in the presence of adequate dietary intake of vitamin B12.

5. Vitamin B12 status is typically assessed via serum or plasma vitamin B12 levels. Values below approximately 170–250 pg/mL (120–180 picomol/L) for adults indicate a vitamin B12 deficiency. However, evidence suggests that serum vitamin B12 concentrations might not accurately reflect intracellular concentrations. An elevated serum homocysteine level (values >13 micromol/L) might also suggest a vitamin B12 deficiency. However, this indicator has poor specificity because it is influenced by other factors, such as low vitamin B6 or folate levels. Elevated methylmalonic acid levels (values >0.4 micromol/L) might be a more reliable indicator of vitamin B12 status because they indicate a metabolic change that is highly specific to vitamin B12 deficiency.

6. Vitamin B12 deficiency is characterized by megaloblastic anemia, fatigue, weakness, constipation, loss of appetite, and weight loss. Neurological changes, such as numbness and tingling in the hands and feet, can also occur . Additional symptoms of vitamin B12 deficiency include difficulty maintaining balance, depression, confusion, dementia, poor memory, and soreness of the mouth or tongue. The neurological symptoms of vitamin B12 deficiency can occur without anemia, so early diagnosis and intervention is important to avoid irreversible damage. During infancy, signs of a vitamin B12 deficiency include failure to thrive, movement disorders, developmental delays, and megaloblastic anemia. Many of these symptoms are general and can result from a variety of medical conditions other than vitamin B12 deficiency.

7. Typically, vitamin B12 deficiency is treated with vitamin B12 injections, since this method bypasses potential barriers to absorption. However, high doses of oral vitamin B12 can also be effective. The authors of a review of randomized controlled trials comparing oral with intramuscular vitamin B12 concluded that 2,000 mcg (I like 5,000 mcg) of oral vitamin B12 daily, followed by a decreased daily dose of 1,000 mcg and then 1,000 mcg weekly and finally, monthly might be as effective as intramuscular administration. Overall, an individual patient’s ability to absorb vitamin B12 is the most important factor in determining whether vitamin B12 should be administered orally or via injection. In most countries, the practice of using intramuscular vitamin B12 to treat vitamin B12 deficiency has remained unchanged.

8. Large amounts of folate can mask the damaging effects of vitamin B12 deficiency by correcting the megaloblastic anemia caused by vitamin B12 deficiency without correcting the neurological damage that also occurs. Moreover, preliminary evidence suggests that high serum folate levels might not only mask vitamin B12 deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B12 deficiency. Permanent nerve damage can occur if vitamin B12 deficiency is not treated. For these reasons, folate intake from fortified food and supplements should not exceed 1,000 mcg daily in healthy adults.

Groups at Risk of Vitamin B12 Deficiency

The main causes of vitamin B12 deficiency include vitamin B12 malabsorption from food, pernicious anemia, postsurgical malabsorption, and dietary deficiency. However, in many cases, the cause of vitamin B12 deficiency is unknown. The following groups are among those most likely to be vitamin B12 deficient.

Older adults: Atrophic gastritis, a condition affecting 10%–30% of older adults, decreases secretion of hydrochloric acid in the stomach, resulting in decreased absorption of vitamin B12. Decreased hydrochloric acid levels might also increase the growth of normal intestinal bacteria that use vitamin B12, further reducing the amount of vitamin B12 available to the bodY.

Individuals with atrophic gastritis are unable to absorb the vitamin B12 that is naturally present in food. Most, however, can absorb the synthetic vitamin B12 added to fortified foods and dietary supplements. As a result, the IOM recommends that adults older than 50 years obtain most of their vitamin B12 from vitamin supplements or fortified foods. However, some elderly patients with atrophic gastritis require doses much higher than the RDA to avoid subclinical deficiency.

Individuals with pernicious anemia: Pernicious anemia, a condition that affects 1%–2% of older adults, is characterized by a lack of intrinsic factor. Individuals with pernicious anemia cannot properly absorb vitamin B12 in the gastrointestinal tract. Pernicious anemia is usually treated with intramuscular vitamin B12. However, approximately 1% of oral vitamin B12 can be absorbed passively in the absence of intrinsic factor, suggesting that high oral doses of vitamin B12 might also be an effective treatment.

Individuals with gastrointestinal disorders: Individuals with stomach and small intestine disorders, such as celiac disease and Crohn’s disease, may be unable to absorb enough vitamin B12 from food to maintain healthy body stores. Subtly reduced cognitive function resulting from early vitamin B12 deficiency might be the only initial symptom of these intestinal disorders, followed by megaloblastic anemia and dementia.

Individuals who have had gastrointestinal surgery: Surgical procedures in the gastrointestinal tract, such as weight loss surgery or surgery to remove all or part of the stomach, often result in a loss of cells that secrete hydrochloric acid and intrinsic factor. This reduces the amount of vitamin B12, particularly food-bound vitamin B12, that the body releases and absorbs. Surgical removal of the distal ileum also can result in the inability to absorb vitamin B12. Individuals undergoing these surgical procedures should be monitored preoperatively and postoperatively for several nutrient deficiencies, including vitamin B12 deficiency.

Vegetarians: Strict vegetarians and vegans are at greater risk than lacto-ovo vegetarians and non-vegetarians of developing vitamin B12 deficiency because natural food sources of vitamin B12 are limited to animal foods. Fortified breakfast cereals and fortified nutritional yeasts are some of the only sources of vitamin B12 from plants and can be used as dietary sources of vitamin B12 for strict vegetarians and vegans. Fortified foods vary in formulation, so it is important to read the Nutrition Facts labels on food products to determine the types and amounts of added nutrients they contain.

Pregnant and lactating women who follow strict vegetarian diets and their infants: Vitamin B12 crosses the placenta during pregnancy and is present in breast milk. Exclusively breastfed infants of women who consume no animal products may have very limited reserves of vitamin B12 and can develop vitamin B12 deficiency within months of birth. Undetected and untreated vitamin B12 deficiency in infants can result in severe and permanent neurological damage.

The American Dietetic Association recommends supplemental vitamin B12 for vegans and lacto-ovo vegetarians during both pregnancy and lactation to ensure that enough vitamin B12 is transferred to the fetus and infant. Pregnant and lactating women who follow strict vegetarian or vegan diets should consult with a pediatrician regarding vitamin B12 supplements for their infants and children.

Health Risks from Excessive Vitamin B12

The IOM did not establish a UL for vitamin B12 because of its low potential for toxicity. In Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline, the IOM states that “no adverse effects have been associated with excess vitamin B12 intake from food and supplements in healthy individuals”.

Findings from intervention trials support these conclusions. In the NORVIT and HOPE 2 trials, vitamin B12 supplementation (in combination with folic acid and vitamin B6) did not cause any serious adverse events when administered at doses of 0.4 mg for 40 months (NORVIT trial) and 1.0 mg for 5 years (HOPE 2 trial).

Interactions with Medications

Vitamin B12 has the potential to interact with certain medications. In addition, several types of medications might adversely affect vitamin B12 levels. A few examples are provided below. Individuals taking these and other medications on a regular basis should discuss their vitamin B12 status with their healthcare providers.

Chloramphenicol: Chloramphenicol (Chloromycetin®) is a bacteriostatic antibiotic. Limited evidence from case reports indicates that chloramphenicol can interfere with the red blood cell response to supplemental vitamin B12 in some patients.

Proton pump inhibitors: Proton pump inhibitors, such as omeprazole (Prilosec®) and lansoprazole (Prevacid®), are used to treat gastroesophageal reflux disease and peptic ulcer disease. These drugs can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach. However, the evidence is conflicting on whether proton pump inhibitor use affects vitamin B12 status. As a precaution, healthcare providers should monitor vitamin B12 status in patients taking proton pump inhibitors for prolonged periods.

H2 receptor antagonists: Histamine H2 receptor antagonists, used to treat peptic ulcer disease, include cimetidine (Tagamet®), famotidine (Pepcid®), and ranitidine (Zantac®). These medications can interfere with the absorption of vitamin B12 from food by slowing the release of hydrochloric acid into the stomach. Although H2 receptor antagonists have the potential to cause vitamin B12 deficiency, no evidence indicates that they promote vitamin B12 deficiency, even after long-term use. Clinically significant effects may be more likely in patients with inadequate vitamin B12 stores, especially those using H2 receptor antagonists continuously for more than 2 years.

Metformin: Metformin, a hypoglycemic agent used to treat diabetes, might reduce the absorption of vitamin B12, possibly through alterations in intestinal mobility, increased bacterial overgrowth, or alterations in the calcium-dependent uptake by ileal cells of the vitamin B12-intrinsic factor complex. Small studies and case reports suggest that 10%–30% of patients who take metformin have reduced vitamin B12 absorption. In a randomized, placebo controlled trial in patients with type 2 diabetes, metformin treatment for 4.3 years significantly decreased vitamin B12 levels by 19% and raised the risk of vitamin B12 deficiency by 7.2% compared with placebo. Some studies suggest that supplemental calcium might help improve the vitamin B12 malabsorption caused by metformin, but not all researchers agree.

REFERENCES

FROM: https://academic.oup.com/ajcn/article/71/2/514/4729184
Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring Study

The American Journal of Clinical Nutrition, Volume 71, Issue 2, 1 February 2000, Pages 514–522, https://doi.org/10.1093/ajcn/71.2.514

ABSTRACT

Background: Low vitamin B-12 status is prevalent among the elderly, but few studies have examined the association between vitamin B-12 status and intake.
Objective: We hypothesized that vitamin B-12 concentrations vary according to intake source.
Design: Plasma concentrations and dietary intakes were assessed cross-sectionally for 2999 subjects in the Framingham Offspring Study. The prevalence of vitamin B-12 concentrations <148, 185, and 258 pmol/L was examined by age group (26–49, 50–64, and 65–83 y), supplement use, and the following food intake sources: fortified breakfast cereal, dairy products, and meat.
Results: Thirty-nine percent of subjects had plasma vitamin B-12 concentrations <258 pmol/L, 17% had concentrations <185 pmol/L, and 9% had concentrations <148 pmol/L, with little difference between age groups. Supplement users were significantly less likely than non-supplement-users to have concentrations <185 pmol/L (8% compared with 20%, respectively). Among non-supplement-users, there were significant differences between those who consumed fortified cereal >4 times/wk (12%) and those who consumed no fortified cereal (23%) and between those in the highest and those in the lowest tertile of dairy intake (13% compared with 24%, respectively), but no significant differences by meat tertile. Regression of plasma vitamin B-12 on log of intake, by source, yielded significant slopes for each contributor adjusted for the others. For the total group, b = 40.6 for vitamin B-12 from vitamin supplements. Among non-supplement-users, b = 56.4 for dairy products, 35.2 for cereal, and 16.7 for meat. Only the meat slope differed significantly from the others.
Conclusions: In contrast with previous reports, plasma vitamin B-12 concentrations were associated with vitamin B-12 intake. Use of supplements, fortified cereal, and milk appears to protect against lower concentrations. Further research is needed to investigate possible differences in bioavailability.

 

INTERNET REFERENCES

0

ESSENTIAL NUTRIENTS – SEVEN ARGUMENTS FOR NUTRITIONAL SUPPLEMENTS

Fred Liers PhD nutrients nutritional supplementsAlmost daily articles, reports, or studies appear claiming nutritional supplements are not effective. The claims vary, but the verdict is always there is little or no scientific evidence proving supplements (or the nutrients in supplements) work. Others assert that people who take supplements have the world’s most expensive urine. This is nonsense! The scientific evidence is clear, available, and it has been for a long time.

Among the many problems with these reports is bashing supplements based on studies using low dose or non-therapeutic levels of nutrients. There is frequently failure to consider the importance of synergy among nutrients. Often there is data manipulation via statistical methods (often in meta-analyses).

Well beyond the question of whether supplements support health are the factors in modern life that create a greater needs for supplementing with important vitamins, minerals, cofactors, and other nutrients.

This month we present “Seven Arguments for Nutritional Supplements.” As the title implies, there are at least seven solid arguments for nutritional supplementation. There are actually a lot more.

To preview these arguments in favor of taking supplements, they are: 1) reduced food quality, 2) nutrient density varies by location, 3) modern lifestyles and stress, 4) environmental pollution, 5) too low RDAs, and 6) promotion of health and delaying of aging, and 7) the human right to correct information.

essential nutrients fatty acids EFA supplement

Essential Fatty Acids (EFA) are one type of essential nutrient required for health.

We at HPDI re-publish articles from the Orthomolecular News Service  (OMNS) because the authors provide much needed truth. Truth the form of correcting the false assumptions of anti-supplement propagandists to clarify the benefits of nutritional supplements. This information can help people be healthier easily and at relatively low cost.

HPDI offers a full line of foundational nutritional supplements, including multivitamins, vitamin C and antioxidant formulas, essential fats, and high-RNA Rejuvenate! superfoods. We also offer nearly 100 other nutritional supplements from single nutrients to condition specific formulas. See our full product overview.

Enjoy this article from the Orthomolecular News Service (OMNS). ~

Seven Arguments for Taking Nutritional Supplements

by Dag Viljen Poleszynski, PhD

(OMNS Sept 12 2018)

One of the most vitamin-restrictive countries in the world is Norway. There, authorities limit potencies to only slightly higher than RDA (Recommended Dietary Allowance) levels for dietary supplements sold outside of pharmacies. The traditional reasoning is that most people receive the nutrients they need from a “balanced diet.” [1]

The authorities are also obsessively concerned that some vitamins and minerals are harmful in high doses. And, since an intake of water-soluble vitamins in excess of needs is excreted in the urine, Norwegian “experts” advise that taking supplements is a waste of money.

Accordingly, the argument goes, the public should be protected not only from possible harm, but also from wasting money on unnecessary nutrients. The official policies on nutritional supplements vary within OECD (Organization for Economic Cooperation and Development) countries. Some are more liberal, while others are even more restrictive.

The official view on the connection between nutrient intake and possible toxicity is illustrated by the Norwegian Food Authority in a graph. [2]

Perceived risk from intake of nutrients. (Source: Expert Group on Vitamins and Minerals. Safe upper limits for Vitamins and Minerals. May 2003: Food Standards Agency, UK.)

The graph illustrates the official view on nutrients, assuming that nutrients function in the same way as pharmaceuticals, which they do not. Supplements of most vitamins, but also minerals and other nutrients, do not have very serious side effects even when taken at very high levels – in contrast with most drugs. [3,4] The fact that most of the chemotherapeutic drugs used against cancer have none or even just marginal effects against most cancers [5], while at the same time cause a lot of serious side effects, is rarely up for discussion.

The idea that nutritional supplements are not safe has a legal underpinning in Norwegian Food Law, which in section 16 prohibits sale of any food which is not safe: “Any food shall be considered not to be safe if it is seen as detrimental to health or not fit for consumption.” [6]

However, the Norwegian authorities do admit that vitamin D supplements are needed during part of the year. [1] Only part of the year? One third of Norway is within the Arctic Circle. Norway has far too little sunshine (especially during winter months) to get adequate levels of vitamin D from UVB radiation on the skin.

The authorities also recommend that pregnant women take folic acid to prevent birth defects, and omega-3-fatty acids may be advisable for those who do not eat fish regularly. Norwegians have a long tradition of giving children cod liver oil, which in a daily tablespoon provides enough vitamin A and D and essential fatty acids to cover basic needs.

Essential and conditionally essential nutrients

There are thousands of dietary supplements on the market, including 40+ essential nutrients alone and in various combinations, i.e. vitamins, minerals, trace elements and fatty acids. However, a number of other nutrients are “conditionally essential”, meaning that the body normally can make these molecules, but some people do not make optimal amounts. Examples are L-carnitine, alpha-lipoic acid, the methyl donor betaine, [7] chondroitin sulfate, coenzyme Q10, choline, amino acids such as tyrosine or arginine, and “essential” sugars normally formed in the body. [8]

Healthy young people normally make sufficient amounts of conditionally essential molecules in the body, although the levels are not always optimal. With inadequate levels of minerals or vitamins, key enzymes in biochemical pathways may not function optimally.

Due to genetic mutations, some enzymes may have increased needs for certain cofactors (vitamins), which can prevent them from functioning optimally.[9] Some enzymes only function normally when supplied with cofactors in greater amounts than normally required.

If supplements of essential nutrients prove insufficient for optimal enzyme function, “conditionally essential” nutrients may be added as part of a comprehensive, therapeutic program.

Some reservations

Parents are advised to become familiar with the literature on essential nutrients, for instance by consulting the Orthomolecular News Service. Children should be given supplements in appropriate doses and in a suitable form. Pills should not be given before children can control the swallowing reflex. Multivitamin powder can be given dissolved in water or juice. Parents should not dose vitamin C so high that a child comes to school or kindergarten with loose bowels or diarrhea.

In high doses, niacin may cause unpleasant side effects such as flushing and itching lasting up to several hours. [10] Although this is not dangerous, it may cause a child to feel unwell and anxious. Starting niacin supplementation with a low dose and gradually increasing it will allow the body to adapt and avoid the niacin flush.

A multivitamin supplement containing moderate amounts of niacin is often adequate until a child is 8-10 years old. For younger children, the dosage should start with only a few tens of milligrams, and not increased to more than 50-100 mg/day. Adults may gradually get used to taking 1,000-1,500 mg/d divided into 3 doses per day.

When it comes to omega-3 fatty acids (omega = ω) such as EPA and DHA, children may be given cod liver oil and served fish and/or other seafood 2-3 times a week. It is important to check the dose of vitamin A supplied, as it can be toxic in high doses, especially for children. One problem with cod liver oil today is that vitamin D has been removed during processing, thus changing the natural ratio of the two vitamins so that we ingest relatively too much of vitamin A. [11]

Higher dosages may be given after having consulted a therapist who has measured the ratio of omega-6 to omega-3 fatty acids in relevant cell membranes (red blood cells). In most industrialized countries, many people get too much of the omega-6 fatty acids, and would therefore benefit from eating more seafood or taking supplements with omega-3 fatty acids derived from organisms low in the food chain (algae, krill).

Flax seeds contain a high level of the essential omega-3 fatty acid alpha-linolenic acid, and freshly ground flaxseed meal or flax oil can be mixed with breakfast cereals or smoothies. Note that it may be advisable to limit eating farmed fish to once per week, since their fodder contains less omega-3 fatty acids than the food eaten by wild fish, and possibly also contains more contaminants. [12] Some researchers even warn against letting children eat too much fish because of the content of environmental toxins. [13,14]

Reasons for high-dose supplements of micronutrients

I have identified a number of arguments in favor of supplementing the modern diet with essential nutrients, here summarized with seven headlines. Most people should consider taking a multivitamin supplement containing vitamins and minerals even if they eat a nutritionally balanced diet.

Additional nutrients may contribute to better health and, in some cases, can be of vital importance in our modern world. The arguments are presented in random order, i.e. the order does not reflect priority.

1. The agricultural revolution has reduced food quality

The transition from an existence as hunter and gatherers to urban agriculture around 10,000 years ago began an epoch when foods were mass-produced but had lower nutritional density, compared with the previous food eaten by our ancestors. The nutritional density in many foods has fallen significantly since human societies transformed from hunter-gatherers into resident farmers. This is especially true in the last 60-70 years after agriculture was changed from small, versatile ecologically driven family farms to large, chemical-based, industrial agriculture. [15]

The reduction of nutritional content in modern crops, compared with older varieties, is well documented. [16] It is a consequence of soil erosion, loss of essential minerals from continual heavy use, combined with breeding of new varieties, which has increased the size and growth rate of plants by increasing the content of sugar and water and decreasing their mineral content compared to ancient species. At the same time, the relative content of other macronutrients (fat, protein/amino acids) and antioxidants may have been reduced.

Reduced nutritional density in many foods, combined with the use of refined “foods” like sugar, white flour and refined oils, places a greater priority on eating the most nutritious foods.

Farm produce grown organically generally has higher levels of essential nutrients such as trace minerals because the soil contains higher levels of trace minerals and the produce grows slower and thus has more time to absorb nutrients from the soil. Examples of nutrient dense foods are sardines, wild salmon, shellfish, eggs, liver, kale, collards and spinach, sea plants (seaweed), garlic, blueberries, and dark chocolate. [17]

2. Nutritional content of food varies with geographical location

Nutritional density varies considerably geographically between different regions, even with the same agricultural methods. This was documented in the United States in 1948 by a researcher at Rutgers University in the so-called Firman Bear report. [18] At that time agriculture was little mechanized, and artificial fertilizers and pesticides were hardly used.

The analysis found large differences in the content of minerals in the same food. The largest variations were found for potassium, sodium, boron and iron in spinach, while the greatest differences in calcium, magnesium and copper content were found in tomatoes.

The soil in areas with relatively low rainfall may in some cases contain an extremely high concentration of minerals, which is reflected in the plants growing there. This was well documented 70 years ago in the book Tomorrow’s Food. [19] The dentist George W. Heard found that the soil in Hereford, Texas, was exceptionally rich in minerals.[20]

Hereford became known as the “town without a toothache” after a newspaper article from January 29, 1942, reported that Hereford had the lowest incidence of tooth decay of any city in the United States. [21] Dr. Heard found that people in Hereford had exceptionally few dental cavities and also that the soil locally was especially rich in minerals. He emphasized that the population in the county ate unprocessed food and was drinking raw milk. [19]

Recent research shows that differences in the content of the selenium in the soil can cause major differences in the concentration of selenium in meat. [22] For instance, since the soil in Finland is poor in selenium, the authorities decided in the early 1980s to add selenate to commercial fertilizers. A survey of selenium status among 108 healthy young people showed an increase in the blood selenium level of about 50 percent after four years. [23]

A similar problem with the level of minerals in the soil exists for the content of magnesium. Often when the soil gets depleted of magnesium from heavy use, this essential mineral is not included in soil amendment with fertilizers. Produce grown in soil with an adequate level of magnesium will contain more magnesium than produce grown in soil deficient in magnesium.

Perhaps as many as 70-80% of the US population is magnesium-deficient, which causes many health problems. [24] Magnesium supplements (chloride, malate or citrate) can provide an adequate level when vegetables grown in soil with adequate magnesium are not available.

3. Stress and the modern lifestyle increase the need for nutrients

Mental stress increases the excretion and hence the need for many nutrients. Among the most important are magnesium and vitamin C, both of which are used by the body in larger quantities during periods of physical and mental stress. [24,25] Compared with our past as hunters and gatherers, today´s stress is often of a more permanent nature. Instead of experiencing occasional situations where we had to fight or flee, many of us live with recurring stress day in and out.

Vitamin C protects the brain and nervous system from damage caused by stress because the synthesis and maintenance of chemical neurotransmitters such as adrenaline and noradrenaline requires adequate levels of vitamin C. [25]

Vitamin C is also needed to repair collagen which is essential for skin, blood vessels, bones and joints, and muscles. When these are damaged by physical stress, extra vitamin C is necessary.

A controlled trial of 91 adults who experienced increased anxiety and stress 2-3 months after an earthquake in New Zealand in 2011 was divided into three groups, two were given a broad spectrum supplement of micronutrients in low or higher doses. [26] The supplements were found to alleviate the experience of stress, with the biggest dose having the biggest effect.

Our sedate, modern lifestyle reduces the need for energy from food, which implies a lower food intake or obesity. Loren Cordain, PhD, and coworkers have estimated that hunter-gatherers had significantly higher energy needs than the typical modern office worker. [27]

A lower energy intake generally reduces the absolute intake of all nutrients, while the need for some nutrients is not always reduced proportionally with energy intake. Overall this suggests that more exercise along with a more nutritious diet, including supplements of essential nutrients and less carbohydrates, will help to prevent obesity and maintain health.

Processing of food reduces its nutritional content, and the finished products are often based on fractions of the original foods. One example is milling grain to make white flour, [1] which has a lower nutritional density than whole grain flour.

The reduction in nutritional value has accelerated since whole foods are now divided into pieces, for example, boneless chicken breast. When meat is injected with saline to increase the volume, the relative level of essential nutrients is reduced. In the United States, many supermarkets in low-income rural and inner city areas have a limited selection of nutrient-dense foods, compared with high-income areas. [28]

4. Environmental pollutants increase the need for nutrients

The need for efficient detoxification and excretion is greatly increased by environmental pollution from the chemical industry, herbicides and pesticides used by industrial agriculture, antibiotic treatment of animals, transport, and plastic packaging. [29]

In our polluted world, the increased toxic load may be compensated for by an increase in nutrients to promote detoxification. One can respond by taking large doses of supplements of essential nutrients, for example, antioxidants vitamin C and E, and an adequate dose of selenium, which help the body detoxify harmful chemicals. Also helpful is regularly taking sauna baths, fasting periodically, and eating an excellent diet that includes generous portions of dark green leafy vegetables and colorful vegetables and fruits. [30]

A recent study predicts that global warming may reduce the nutrient density in many foods worldwide. [31] Atmospheric CO2 is estimated to surpass 550 ppm in the next 30-80 years, leading to larger crops with lower content of protein, iron and zinc per energy unit.

Assuming that diets remain constant, while excluding other climate impacts on food production, the researchers estimated that elevated CO2 could cause an additional 175 million people to be zinc deficient and an additional 122 million people to be protein deficient in 2050. Anemia would increase significantly if crops lose even a small amount of iron. The highest risk regions – South and Southeast Asia, Africa, and the Middle East – are especially vulnerable, since they do not have the means and access to compensate using nutritional supplements.

5. The RDA for essential nutrients is too low

The recommended nutrient reference intake (NRI) has been defined by UK authorities and the EU Food Safety Agency as the dose that is adequate for 95 percent of the population. [32] These authorities have given recommendations for a total of 41 chemical substances, [33] including 13 vitamins, 17 minerals/trace elements, 9 amino acids and two fatty acids. The problem with such guidelines is that when using the same 0.95 fraction for just 16 of the essential nutrients, the fraction of the overall population that has their needs met with the RDA is less than half (0.9516 = 0.44).

Given the above assumption, the proportion of the population having all nutrient needs met falls below 25 percent for 30 nutrients (0.9530 = 0.21). These 25 percent will not necessarily get optimal amounts, just enough so that they probably will have no deficiencies in accordance with established standards. Each individual is different and has different biochemical needs, so we all need different doses of essential nutrients. Many vitamins and minerals can give additional benefit when taken at higher doses.

The need for several essential nutrients increases with age and sickness. This applies, for example, to vitamin C, vitamin D, magnesium, and iron. In 2017 the Norwegian Food Safety Authority proposed to revise the official maximum levels for vitamins and minerals in dietary supplements. [34]

Their proposal introduced four different age categories with separate maximum intakes. Initially, the agencies proposed to revise the daily doses allowed in dietary supplements for folic acid, magnesium, calcium, vitamin C and D. At the same time, maximum rates were temporarily suspended for vitamins A, E, K, thiamine (B1), riboflavin (B2), niacin (B3), pantothenate (B5), pyridoxine (B6), cobalamine (B12), biotin, and for phosphorus, iron, copper, iodine, zinc, manganese, selenium, chromium, molybdenum, sodium, potassium, fluoride, chloride, boron and silicon.

The upper limits for some nutrients may be changed in the future. Unfortunately, Norwegian nutrition “experts” will likely continue to limit allowable doses below those freely available in the US and even Sweden.

6. An optimal nutrient intake promotes health and delays aging

A spokesperson for optimal nutritional intake is the well-known biochemist Bruce Ames, who proposed the “triage theory of nutrients,” in which enzymes responsible for cell maintenance functions evolved to have lower affinity for the essential vitamin and mineral cofactors than the enzymes responsible for short-term survival, to preserve life during times of famine. [35]

Thus, higher levels of vitamins and minerals may delay mitochondrial aging, speed up the repair of large molecules such as DNA and collagen, and generally improve other cellular functions. This is an important rationale for taking higher doses of vitamins and minerals than recommended reference intakes.

Dietary supplements can slow the aging process, in part by reducing the harmful effects of free radicals, known to be involved in many diseases such as cardiovascular disease and cancer. [36]

Naturally occurring hormones and/or supplements of cofactors needed for optimal hormone production in the body can have a significant life-prolonging effect if the body produces less than optimal amounts. [37] This is especially relevant for those with a genetic predisposition for disease.

An optimum intake of all nutrients is difficult to achieve even for those who eat almost exclusively an excellent diet of nutrient dense foods, such as meat and innards, fish, shellfish, fowl, eggs, nuts, mushrooms, and vegetables, berries and nutritious fruits. Some nutrients such as folic acid or carotenoids in vegetables are absorbed better from processed than unprocessed foods.

Although vegetables are often considered to be a good source of vitamins, for example vitamin A from carrots, vitamin A is only found in animal products such as liver, egg yolk, fish cod and cod liver oil. Although eating raw vegetables is helpful for several reasons (vitamin C, fiber, microbiota), carotenoids (alpha/beta-carotene, lutein, lycopene) in vegetables are less well absorbed from raw than cooked food and better absorbed in the presence of added fat. [38,39].

Nutrients in vegetables are better absorbed when finely chewed, graded, or mashed [38], and cooking and grinding meat reduces the energy required to digest it [40] and increases nutrient absorption [41].

Orthomolecular pioneer Abram Hoffer and Orthomolecular News Service Editor Andrew W. Saul suggested this list of daily intakes of vitamins and minerals. [42] The Norwegian 2017 recommendations for adult men and women [43] are given in comparison. Individual needs may vary substantially from person to person and also with health status.

The figures for optimal intake are obtained from the Independent Vitamin Safety Review Panel of physicians, researchers and academics, who concluded:

“People are deceived in believing that they can get all the nutrients they need from a ‘balanced diet’ consisting of processed foods. To achieve an adequate intake of vitamins and minerals, a diet of unprocessed whole foods, along with intelligent use of dietary supplements is more than just a good idea: it is vital.” [44: 55]

A well-known example is vitamin C, which can effectively fight viral infections, prevent or reverse disease caused by bacteria, and help the body detoxify organic and inorganic toxins. [45] Vitamin C also reduces the risk for cancer, strengthens connective tissues (collagen), and counteracts stress by increasing the adrenal´s production of cortisol. The dose required is set according to the body’s need.

Nobel Price Laureate Linus Pauling suggested that an optimal daily intake of vitamin C could vary from at least 250 mg up to 20 grams per day. [46] Because unabsorbed vitamin C attracts water into the gut, some people may experience loose stools, gas and/or diarrhea by ingesting only 1-2 grams at a time, while others with a higher level of stress may tolerate 5-6 grams or more. The dose that causes loose stools is called the “bowel tolerance” for vitamin C. [47] To avoid the laxative effect of high doses, it is best to take vitamin C throughout the day in smaller divided doses.

When the body is stressed by disease, the gut will naturally absorb more vitamin C because the body needs more. To find the optimal dose, the intake should be increased until bowel tolerance is reached. Some people can tolerate more than 100,000 mg/d of vitamin C in divided doses during serious illness without having loose stool.

Liposomal vitamin C bypasses the normal bowel tolerance because it is absorbed directly through cell membranes, so higher doses can be tolerated without diarrhea.

7. A human right to receive correct information

Access to correct information about food and essential nutrients, including knowledge about the importance of food for health is a fundamental human right. Such information should not only provide a summary of the nutrient content of food, but in our opinion should also explain how dietary supplements can counteract deficiencies and prevent and reverse disease caused by nutrient deficiencies.

We should be free to purchase quality-controlled supplements of essential nutrients and to use them to counteract aging and damage from stress as part of a long-term health plan. The right to reject recommendations by doctors for symptomatic treatment with synthetic, some times life-threatening, drugs to alleviate symptoms should be included. [48,49]

I have not found any formulation of such rights from the Norwegian authorities. The role of parents and their right to receive correct health information is addressed in a book by lawyer Anne Kjersti C. Befring, a fellow at the University of Oslo since 2014. [50]

Summary

The use of dietary supplements is widespread. High doses of vitamins are thought to be helpful because they help the body recover from damage and maintain itself long-term. Many vitamins are not harmful in doses even 10 to 100-fold higher than officially recommended.

Some governments warn about possible negative side effects, even including increased mortality from “excessive” intake of certain supplements. However, supplements of essential nutrients have been available for more than 80 years. They are known to be safe, and the observed side effects are generally mild with few exceptions.

It is possible to ingest too much of certain vitamins and minerals (vitamin A, calcium, iron, copper, selenium) which may exacerbate an existing imbalance or lack of another mineral (magnesium, zinc). It is also important to balance intake of fatty acids in the omega-6 and omega-3 series, as most people get too much omega-6 and not enough omega-3.

Small children can be overdosed with adult doses of for example vitamin A or iron, and pills may be dangerous for babies or young children because they can get stuck in the throat. Therefore, I recommend consulting a doctor or nutritionist educated in orthomolecular medicine. Most people are likely to benefit from taking a broad-spectrum multivitamin/mineral supplement as a basic insurance against deficiencies.

Compared to pharmaceutical drugs, supplements of most essential nutrients are quite harmless. However, some supplements may have poor quality, or contain toxic metals such as lead or cadmium. Therefore, it is the duty of our authorities to ensure that potentially hazardous products or supplements of poor quality are not sold, and that consumers are offered fair prices in a free market.

An example where the Norwegian authorities do not follow up such basic duties is that pharmacies demand more than 1,600 Norwegian Kroner (about $190) per kg of vitamin C in powder form, which would cost less than $20 with free competition and no restrictions in permitted doses or outlets.

Those who want to use natural healing methods, such as the use of food and supplements of essential nutrients to prevent or reverse illness, should consult therapists who are qualified to give advice on how natural therapies can help.

I recommend that anyone interested in supplements read the references for this article as well as the archives of the Journal of Orthomolecular Medicine http://orthomolecular.org/library/jom/ and the Orthomolecular Medicine News Service http://orthomolecular.org/resources/omns/index.shtml . Both are free access online.

(Dag Viljen Poleszynski, PhD, is the editor of Helsemagasinet [Health Magazine] https://vof.no/arkiv/ . He has translated and published a large number of OMNS releases in Norwegian.)

 

References

1. National Nutrition Council. Dietary advice to promote public health and prevent chronic disease. Directorate of Health, Oslo January 2011.

2. [Norwegian Food Authority. Nutritional supplements – a situational description.] Oslo 2013. http://www.matportalen.no/kosthold_og_helse/tema/kosttilskudd/article32116.ece/BINARY/Kosttilskudd%20-%20en%20tilstandsbeskrivelse

3. Moore TJ, Cohen MR, Furberg CD. Serious adverse drug events reported to the Food and Drug Administration, 1998-2005. Archives of Internal Medicine 2007; 167: 1752-9. https://www.ncbi.nlm.nih.gov/pubmed/17846394.

4. Gøtzsche PC. Our prescription drugs kill us in large numbers. Polskie Archiwum Medycyny Wewnetrznej 2014; 124: 628-33. http://pamw.pl/en/issue/article/25355584

5. Abel U. [Chemotherapy of advanced carcinomas. A critical inventory] 2nd edition. Stuttgart, Germany: Hippokrates Verlag GmbH, 1995.

6. [Law on food production and food safety, etc. (The Food Law)]. https://lovdata.no/dokument/NL/lov/2003-12-19-124 (24.5.2018).

7. Craig SAS. Betaine in human nutrition. Am J Hum Nutrition 2004; 80: 539-49. https://academic.oup.com/ajcn/article/80/3/539/4690529 (8.23.2018)

8. Elkins R. Miracle sugars. North Orem, Utah: Woodland Publishing, 2003. http://www.woodlandpublishing.com. ISBN-13: 978-1580543675

9. Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increases Km): relevance to genetic disease and polymorphisms. Am J Clin Nutrition 2002; 75: 616-68. https://academic.oup.com/ajcn/article/75/4/616/4689367

10. Hoffer A. Orthomolecular treatment for schizophrenia and other mental illnesses. Toronto, Canada: The International Schizophrenia Foundation, 2011. http://www.orthomed.org

11. Weston A. Price Foundation. A Response to Dr. Joe Mercola on Cod Liver Oil. April 30, 2009. https://www.westonaprice.org/health-topics/cod-liver-oil/a-response-to-dr-joe-mercola-on-cod-liver-oil/

12. Leech J. Wild vs Framed Salmon – Can Some Fish Be Bad for You? Healthline, June 4, 2017. https://www.healthline.com/nutrition/wild-vs-farmed-salmon

13. Sætre S, Østli K. [Children pay the price for Norwegian dietary advice] Morgenbladet 5.11.2018. https://morgenbladet.no/aktuelt/2018/05/barna-betaler-prisen-norske-kostholdsrad

14. [For after thought – foods with environmental toxins.] https://spiseforaaleve.wordpress.com/2013/03/01/til-ettertanke-mat-med-miljogifter/comment-page-1/ (9.2.2018)

15. Grossman K. The truth about nutrient dense foods that nobody wants to hear. https://blog.radiantlifecatalog.com/truth-about-nutrient-dense-foods (5.26.2018).

16. Hall RH. Food for Nought. The decline in nutrition. New York: Vintage Books 1976. ISBN-13: 978-0394717531

17. Gunnars K. The 11 most nutrient dense foods on the planet. 6.22.2017. https://www.healthline.com/nutrition/11-most-nutrient-dense-foods-on-the-planet (5.26.2018).

18. Bear FE, Toth SJ, Prince AL. Variations in mineral composition of vegetables. Soil Science of America Proceedings 1948; 13: 380-4. https://njaes.rutgers.edu/pubs/bear-report/

19. Rorty J, Norman NP. Tomorrow’s Food; the coming revolution in nutrition. New York: Prentice Hall, 1947/1956.

20. Heard GW. Man versus Toothache. (c)George W. Heard, Hereford, Texas. Milwaukee, WI: Lee Foundation for Nutritional Research, 1952.

21. “The Town Without A Toothache,” text, 1959; http://texashistory.unt.edu/ark:/67531/metapth46551/m1/1/University of North Texas Libraries, The Portal to Texas History, http://texashistory.unt.edu

22. Hintze KJ, Lardy GP, Marchello MJ, et al. Areas with high concentration of selenium in the soil and forage produce beef with enhanced concentrations of selenium. Journal of Agricultural and Food Chemistry 2001; 49: 1062-7. https://pubs.acs.org/doi/abs/10.1021/jf000699s

23. Mäkelä AL, Näntö V, Mäkela P, et al. The effect of nationwide selenium enrichment of fertilizers on selenium status of healthy Finnish medical students living in South Western Finland. Biological Trace Element Research 1993; 36: 151-7. https://link.springer.com/article/10.1007/BF02783174

24. Dean C. The Magnesium Miracle. Second Edition. New York: Ballantine Books, 2017. ISBN-13: 978-0399594441

25. Hickey S, Saul AW. Vitamin C: the real story. Laguna Beach, CA: Basic Health Publications, Inc., 2008. ISBN-13: 978-1591202233

26. Rucklidge JJ, Andridge R, Gorman B, et al. Shaken but unstirred? Effects of micronutrients on stress and trauma after an earthquake: RCT evidence comparing formulas and doses. Human Psychopharmacology and Clinical Experience 2012; 27: 440-54. https://onlinelibrary.wiley.com/doi/abs/10.1002/hup.2246

27. Cordain L, Gotshall RW, Eaton SB. Evolutionary aspects of exercise. In: Simopoulos AP, ed.: Nutrition and fitness: Evolutionary aspects. World Review of Nutrition and Diet 1997; 81: 49-60. https://www.ncbi.nlm.nih.gov/pubmed/9287503

28. Zenk SN, Powell LM, Rimkus L, et al. Relative and absolute availability of healthier food and beverage alternatives across communities in the United States. American Journal of Public Health 2014; 104: 2170-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202991/

29. Waldbott GL. Health effects of environmental pollutants. Second edition. St. Louis, MI: The C. V. Mosby Company, 1978. ISBN-13: 978-0801653308

30. Rogers, Sherry A. Detoxify or die. Sarasota, FL: Sand Key Company, Inc., 2002. https://www.amazon.co.uk/s/ref=nb_sb_noss_2?url=search-alias%3Daps&field-keywords=Detoxify+or+die

31. Smith MR, Myers SS. Impact of anthropogenic CO2 emissions on global human nutrition. Nature Climate Change 2018; 8: 834-9. https://www.nature.com/articles/s41558-018-0253-3

32. Dietary Reference Values. https://en.wikipedia.org/wiki/Dietary_Reference_Values (9.1.2018)

33. Essential Nutrients. http://www.nutrientsreview.com/glossary/essential-nutrients (9.1.2018)

34. [Norwegian Food Authority. Revision of national maximum limits for vitamins and minerals in nutritional supplements – separate maximum limits; published 11.9.2016, last changed 6.21.2017]. https://www.mattilsynet.no/mat_og_vann/spesialmat_og_kosttilskudd/kosttilskudd/

35. Ames BN. Prevention of mutation, cancer, and other age-associated diseases by optimizing micronutrient intake. Journal of Nucleic Acids 2010; 210: 1-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945683/

36. Halliwell B, Gutteridge HMC. Free radicals in biology and medicine. 5th edition. Oxford, NY: Clarendon Press, 2015. ISBN-13: 978-0198717485

37. Hertoghe T. The hormone handbook. Copyright (c) 2006 Thierry Hertoghe. Surrey, UK: International Medical Publications, 2006.

38. Edwards AJ, Nguyen CH, You CS, et al. a- og ß-carotene from a commercial carrot puree are more bioavailable to humans than from boiled-mashed carrots, as determined using an extrinsic stable isotope reference method. Journal of Nutrition 2002; 132: 159-67. https://academic.oup.com/jn/article/132/2/159/4687130

39. Unlu NZ, Bohn T, Clinton SK et al. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. The Journal of Nutrition 2005; 135: 431-6. https://www.ncbi.nlm.nih.gov/pubmed/15735074

40. Boback SM, Cox CL, Ott BD et al. Cooking and grinding reduces the cost of meat digestion. Comparative biochemistry and physiology. Part A, molecular & integrative physiology 2007; 148: 651-6. https://www.ncbi.nlm.nih.gov/pubmed/17827047

41. Carmody RN, Wrangham RW. Cooking and the human commitment to a high-quality diet. Cold Spring Harbor Symposium on Quantitative Biology 2009; 74: 427-34. https://www.ncbi.nlm.nih.gov/pubmed/19843593

42. Hoffer A, Saul AW. Orthomolecular medicine for everyone. Laguna Beach, CA: Basic Health Publications, Inc., 2008. ISBN-13: 978-1591202264

43. Hjartåker A, Pedersen JI, Müller H mfl. Grunnleggende ernæringslære. 3. utgave. [Basic nutrition] Oslo: Gyldendal Norsk Forlag AS, 2017.

44. Levy TE. Vitamin C, infectious diseases, & toxins. Curing the incurable. 3rd Edition. (c)Thomas E. Levy 2011. Medfox Pub. ISBN-13: 978-0977952021

45. Pauling L. How to live longer and feel better. New York: W. H. Freeman and Company, 1986. ISBN-13: 978-0870710964

46. Cathcart, RF III. The method of determining proper doses of vitamin C for the treatment of disease by titrating to bowel tolerance. Journal of Orthomolecular Medicine 1981; 10: 125-32. http://orthomolecular.org/library/jom/1981/pdf/1981-v10n02-p125.pdf

47. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients. A meta-analysis of prospective studies. JAMA 1998; 279: 1200-5. https://jamanetwork.com/journals/jama/fullarticle/187436

48. Moore TJ, Cohen MR, Furberg CD. Serious adverse drug events reported to the Food and Drug Administration, 1998-2005. Archives of Internal Medicine 2007; 167: 1752-9. https://www.ncbi.nlm.nih.gov/pubmed/17846394 .

49. Hitchen L. Adverse drug reactions result in 250 000 UK admissions a year. BMJ 2006; 332: 1109. https://www.ncbi.nlm.nih.gov/pubmed/16690649 .

50. Befring AKC. Helse- og omsorgsrett. [Health and Care] Oslo: CappelenDamm AS, 2017.

Nutritional Medicine is Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Find a Doctor

To locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml

The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource.

Editorial Review Board:

Ilyès Baghli, M.D. (Algeria)
Ian Brighthope, M.D. (Australia)
Prof. Gilbert Henri Crussol (Spain)
Carolyn Dean, M.D., N.D. (USA)
Damien Downing, M.D. (United Kingdom)
Michael Ellis, M.D. (Australia)
Martin P. Gallagher, M.D., D.C. (USA)
Michael J. Gonzalez, N.M.D., D.Sc., Ph.D. (Puerto Rico)
William B. Grant, Ph.D. (USA)
Tonya S. Heyman, M.D. (USA)
Suzanne Humphries, M.D. (USA)
Ron Hunninghake, M.D. (USA)
Michael Janson, M.D. (USA)
Robert E. Jenkins, D.C. (USA)
Bo H. Jonsson, M.D., Ph.D. (Sweden)
Jeffrey J. Kotulski, D.O. (USA)
Peter H. Lauda, M.D. (Austria)
Thomas Levy, M.D., J.D. (USA)
Homer Lim, M.D. (Philippines)
Stuart Lindsey, Pharm.D. (USA)
Victor A. Marcial-Vega, M.D. (Puerto Rico)
Charles C. Mary, Jr., M.D. (USA)
Mignonne Mary, M.D. (USA)
Jun Matsuyama, M.D., Ph.D. (Japan)
Dave McCarthy, M.D. (USA)
Joseph Mercola, D.O. (USA)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, M.D. (Finland)
Tahar Naili, M.D. (Algeria)
W. Todd Penberthy, Ph.D. (USA)
Dag Viljen Poleszynski, Ph.D. (Norway)
Jeffrey A. Ruterbusch, D.O. (USA)
Gert E. Schuitemaker, Ph.D. (Netherlands)
Thomas L. Taxman, M.D. (USA)
Jagan Nathan Vamanan, M.D. (India)
Garry Vickar, MD (USA)
Ken Walker, M.D. (Canada)
Anne Zauderer, D.C. (USA)

Andrew W. Saul, Ph.D. (USA), Editor-In-Chief
Editor, Japanese Edition: Atsuo Yanagisawa, M.D., Ph.D. (Japan)
Robert G. Smith, Ph.D. (USA), Associate Editor
Helen Saul Case, M.S. (USA), Assistant Editor
Ralph K. Campbell, M.D. (USA), Contributing Editor
Michael S. Stewart, B.Sc.C.S. (USA), Technology Editor
Jason M. Saul, JD (USA), Legal Consultant

Comments and media contact: drsaul@doctoryourself.com OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication.

0

RESTORE GUT HEALTH FORMULA + VIDEO

Fred Liers PhD restore liquid mineral supplement gut healthHeard of RESTORE liquid mineral supplement? If not, you’re about to discover something important for gut health.

RESTORE™ is formulated to help restore gut health. It works by strengthening the integrity of tight junctions in your intestinal wall.

Maintaining tight junctions is important because they protect your body from substances entering the blood stream. Restore also supports the communications systems of the bacteria in your microbiome.

Tight junctions are natural barriers protecting the lining of your gut barrier, organs such as kidneys and heart, and the blood-brain barrier thereby keeping out unwanted substances. Even as we take in nutrients from the GI tract, the function of tight junctions is maintaining the integrity of the gut wall and other barriers that protect the body.

These days, our gut membrane has a tough job keeping out unwanted substances. Because tight junctions are weakened by many things, including highly processed foods, especially those containing gluten and gliadin, the herbicide glyphosate (the primary ingredient in RoundUp weedkiller), and other exposures like electromagnetic fields (EMF) from digital devices and Wi-Fi networks.

As a result of weakened tight junctions, undesirable substances from food proteins, harmful chemicals and other toxins can slip though into our bloodstream. This can lead to a powerful immune response that can weaken immunity and cause significant inflammation. Foreign substances in the bloodstream can also result in extreme food allergies and food sensitivities to various toxins entering the body.

We live in an age in which our microbiome health is under assault. Studies show our ancient ancestors had 20,000–30,000 different strains of beneficial bacteria in their GI tracts. Many people today have just 5,000 or less. Why is that?

There are many reasons for low microbiome diversity. These reasons include antiobiotic use (both from pharmaceuticals and foods), glyphosate (which essentially acts like an antibiotic), processed foods (especially those containing gluten and gliadin), and systemic degradation of the gut environment rendering it less hospitable for maintaining health populations of gut flora.

These impacts are significant because diversity in your microbiome not only supports gut health, but also appropriate brain health, immune system health, and overall vitality. Restore acts as a “microbiome fertilizer” helping establish and maintain healthy microbiota.

In fact, Restore contains important “redox” molecules produced millions of years ago by existing soil bacteria. These molecules are an important part of communications systems within the body between gut bacteria and with the body’s mitochondria. These communication systems play an important role in establishing proper homeostasis throughout the body.

REASONS TO USE RESTORE™

There are important reasons to try Restore—whether or not you experience significant gut health issues. These reasons include:

• Maintaining strong tight junctions for mega membrane health, and helping the body restore tight junction integrity

• Creating an environment in which beneficial bacteria can thrive

• Boosting microbiome diversity

• Healing the gut

• Mitigating the adverse effects substances like antibiotics, gluten/gliadin, glyphosate, and GMOs on microbiome health

• Supporting immune system function

• Protecting integrity of blood-brain barrier

Other benefits include support for respiratory wellness, enhancing mental clarity, and promoting proper homeostasis throughout the body.

For all these reasons and more, you should consider taking Restore. You can start by taking one teaspoon or less daily, and gradually increasing your dose to one tablespoon or more.Restore for gut health liquid supplement

I have taken Restore daily for more than two years, and benefit greatly from it. The most noticeable effects are a complete cessation of spring allergies (after two decades of worsening symptoms), greater clarity of thinking, and improved overall well being. I have seen other people get good results with a variety of conditions from dysbiosis to gluten/gliadin sensitivity.

MORE ABOUT RESTORE™

You can learn more about Restore on our website. Also, the Restore website offers in-depth information and videos. Here is how the Restore website and Dr. Zach Bush describe the formula:

Restore is a dietary supplement supplying first line defense against daily exposure to environmental and food-borne factors. It helps create an optimal environment or ecology in the gut membrane for beneficial or “good” bacteria to flourish. Beneficial gut flora protect your immune system and maintain health. Restore is a scientifically proven soil-derived mineral supplement designed to support protection of the intestinal walls.

Restore protects the entire gastrointestinal (GI) tract against agricultural herbicides, antibiotics, GMOs, gluten, and food-borne toxins. It helps create an environment in which 20,000–30,000 different strains of beneficial gut bacteria can thrive. This is a far different mode of action from probiotics, most of which contain just 3–30 strains of beneficial bacteria.

Restore helps create a strong immune system along with proper gut function. Microbiome balance and tight junction integrity are known to constitute a significant part of the immune system. They directly affect DNA transcription of cells to promote optimal health and prevent a leaky gut syndrome, thereby improving gut intelligence.

Seventy percent (70%) of our immune system is found in our gut. We need tens of thousands different strains of good gut bacteria to support a healthy immune system. Clinical experience, in addition to cell culture studies, support the theory that Restore’s proprietary formula creates the optimal environment in the gut to create a tight junction barrier and maintain our health and wellness.

Restore is a daily liquid supplement designed to support the protection of the entire gastrointestinal (GI) tract against agricultural herbicides, antibiotics, GMOs, gluten and food-borne toxins by helping to create an environment where between 20,000-30,000 different strains of good gut bacteria thrive. Most probiotics on the market contain fewer than 24 different strains of good gut bacteria.

TRY RESTORE™

Restore is ideal for individuals suffering from gut health issues. Yet, it is also excellent for supporting and maintaining gut health generally. That is the reason we at HPDI consider Restore important enough to designate as a foundational supplement, one of the top six supplements you need for good health.

Given the safety and effectiveness of Restore, there is broad applicability for its use. This is especially true because gut and microbiome health are under constant assault. These assaults range from multiple environmental and lifestyle factors—including poor diets high in processed foods, antibiotics in pharmaceuticals and animal foods—to massive glyphosate (herbicide) contamination of foods, soils, air, and water.

Let Restore be your first line of defense against assaults on your gut health, tight junctions, microbiome diversity, and immune function. As it says on the bottle, “Complete well-being begins in the gut.”

RESTORE RESOURCES

Gut Health – Effects of Glyphosate and Antibiotics
by Hank Liers, PhD and Fred Liers, PhD

Restore – 32 oz

Restore – 8 oz

HPDI Gut Health Formulas

HPDI Foundational Supplements

Restore blog (Restore4Life)

0

DAILY ROUTINE FOR NUTRITIONAL SUPPLEMENTS

Fred Liers PhD nutritional supplements tips tricks daily routineToday I’m sharing my strategies for taking nutritional supplements in an easy,  organized way, and helping ensure you take them daily. I don’t like the word “compliance” because it implies doctor’s orders. Consider my ideas “hacks” instead, for establishing a daily routine.

My goal is making your daily supplement routine simpler. That is, a hassle free, “no brainer” routine that guarantees you take the vitamins, minerals, essential fats, and other supplements you need. At least the most important ones.

YOU NEED A DAILY ROUTINE

Getting out of the house with a good breakfast is hard enough. Nutritional supplements have a way of being forgotten first. That is, unless and until you have a system: a set of strategies for success to ensure a daily routine.

I’ve been working on my “system” for 30 years. It works for me and many others I’ve shared it with. So I’m sharing it with you. But you don’t need to adopt my system or strategies. Watch the video, take what you like, and make it your own. Craft a system that works for you.

My idea is to inspire and show you it’s possible to dummy proof your supplement regimen to never “miss a dose”—or almost never. No matter how busy you are, how rushed you feel, or how often you tend to forget things. You can do this.

FRED’S SYSTEM FOR A SUCCESSFUL DAILY SUPPLEMENT ROUTINE

1. VISIBILITY IS EVERYTHING: “WHAT YOU SEE IS WHAT YOU TAKE”

One of the most important things to consider when establishing or creating a regimen for taking supplements is to make sure your supplements are visible. That is, not hidden in a place that allows you to forget to take them. Like the bathroom. Or your garage. Bad places for supplements in general, unless you’re storing them for future use, or want them to expire.

Making your supplements visible means putting them in a place where  you can see them. Get them out of your bathroom or closet and put them in your kitchen area where you will remember to take them. Recall that nutritional supplements are “food supplements,” right?

The kitchen is best for ensuring you take your supplements. If your kitchen can’t be home to your supplements, then other visible places might include the dining area (or where you eat) or possibly your pantry (or where you keep foods). The top of the refrigerator is surely an unused shelf space you cannot miss.

Another option is keeping visible the primary supplements you take, such as multivitamins, Vitamin C, essential fats, or other high-priority supplements. Then keep less important supplements available, but not in a way that clutters counters or other spaces. By prioritizing this way, you at least ensure the visibility of your most important supplements.

The main thing: If you can see your supplements, you are far more likely to take them, and maintain your daily routine. The kitchen is an ideal place. Because if you can’t see them, you won’t take them.

2. ORGANIZE: REFRIGERATOR TOPS ARE GOOD (BUT I REPEAT MYSELF)

After your nutritional supplements are in your kitchen or in an easily accessible—and hopefully prominent place, then consider organizing them. And noted, I often suggest using the top of the refrigerator since they won’t take up counter space, yet remain visible. Other strategies for organizing and saving space are using small shelves or rotating stands, like lazy susans, as shown in the video above. Or a small basket.

If you must put your supplements away, such as inside a cabinet to save space or for aesthetic reasons, then try to use a kitchen cabinet that is central and easily accessible. And if you use a shelf, lazy susan, or basket, then set it up so you can easily reach the shelf or grab the basket.

The main thing: Keep supplements organized for quick and easy access. This smooths the process for actually taking them. You will be glad you did. Your body and mind will thank you.

3. CONTAINERIZE: CUPS & SAUCERS 101

Your supplements are visible and organized. Now what? Containerize.

Containerizing is not just for your basket or shelf of supplements. It is also for your daily doses. That is, I suggest you set your daily doses out in advance when possible. This helps simplify your day. You can “take” your vitamins without having to think too much. You can just “grab and go.”

The system I use—and demonstrate in the video—relies on small pyrex cups. You can also you small bowls or paper cups, or any small containers you like.

I use one cup per dose, and I usually break up my supplements into two doses per day (morning and early evening), so I use two cups per day.

I like pyrex cups because they stack neatly and don’t take up much counter space. They are portable, so you can pick up a cup (one dose) and carry it with you.

After your doses are prepared, set them out in a place where you will see them—like the kitchen counter or dining room table. Somewhere where you are most likely not to forget them.

The main thing: Divide your supplements into daily doses or sub-doses you can take when you’re ready. It’s much easier to take them when your doses are made in advance. You will win medals from the Supplement Compliance Club.

4. BAGS FOR TRAVEL: BAG ‘EM UP!

After your doses are set out for a day or two—or an entire week—they will be ready and waiting for you. For people who work outside the home or who are traveling, transfer your supplements to portable containers. This might be snack bags (as in my video), but it could be a special box or baggie that holds individual doses.

If I plan to travel or leave for work, I often bag my supplements and place them in my suitcase or car the night before. This ensures I don’t forget them.

For travelers in a pinch, you can put all supplements for say, a week, in a single container, and then divide them up daily. That’s not my ideal, but I’ve seen it work for people who won’t containerize every dose before traveling.

The main thing: Scientific studies prove that having your daily supplements pre-bagged improves your chances of taking them by 1000% when traveling. Pre-bagging makes getting your daily dose so easy, you can think about other things, like where you will go next.

MAINTAIN A DAILY ROUTINE

Maintain your supplement routine. Doggedly. A routine can take time to establish. After you get one started, stick to it like a bee on honey.

If you make your supplements visible, then organize, containerize, and bag them for travel, you will never miss a dose. You will guarantee compliance by implementing these simple “hacks.” Then watch as your health improves and you feel better. Like Superman or Superwoman. Be prepared to jump over buildings in a single bound. ~