0

VITAMIN B12: THE NEGLECTED NUTRIENT

Dr. Hank Liers, PhD vitamin B12 B-12 cobalamin methylcobalaminI previously wrote METHYLATION CYCLE, GENETICS, B VITAMINS in which I considered in-depth how the Methylation Cycle functions, how genetics affect metabolic pathways, and how B vitamins (including vitamin B12, folate, vitamin B6, and vitamin B2) are used in Methylation Cycle pathways. In today’s article, I take an in-depth view of what you need to know about vitamin B12, including the effects of not having sufficient amounts of Vitamin B12 in the body.

Vitamin B12 is one of eight B vitamins. It is the largest and most structurally complicated vitamin. It consists of a class of chemically related compounds (vitamers), all of which show physiological activity. It contains the biochemically rare element cobalt positioned in the center of a chemical ring structure.

Vitamin B12 (also called cobalamin) is a water-soluble vitamin that is involved in the metabolism of every cell of the human body. It is a cofactor in DNA synthesis, and in both fatty acid and amino acid metabolism. It is particularly important in the normal functioning of the nervous system via its role in the synthesis of myelin and in the maturation of developing red blood cells in the bone marrow.

vitamin B12

Vitamin B12 contains the biochemically rare element cobalt positioned in the center of a chemical ring structure.

YOUR NEED FOR VITAMIN B12

Vitamin B12 deficiency is thought to be one of the leading nutritional deficiencies in the world. An extensive 2004 study showed that deficiency is a major health concern in many parts of the world, including the North America, Central and South America, India, and certain areas in Africa. It is estimated that 40 percent of people may have low levels of vitamin B12.

Vitamin B12 affects your mood, energy level, memory, nervous system, heart, skin, hair, digestion and more. It is a key nutrient regarding adrenal fatigue and multiple metabolic functions including enzyme production, DNA synthesis, and hormonal balance.

Because of vitamin B12’s extensive roles within the body, a vitamin deficiency can show up in many different symptoms, such as chronic fatigue, mood disorders such as depression, chronic stress, and low energy.

SOURCES OF VITAMIN B12

The only organisms to produce vitamin B12 are certain bacteria and archaea. Some of these bacteria are found in the soil around the grasses that ruminants eat. They are taken into the animal, proliferate, form part of their gut flora, and continue to produce vitamin B12.

Products of animal origin such as beef (especially liver), chicken, pork, eggs, dairy, clams, and fish constitute the primary food source of vitamin B12. Older individuals and vegans are advised to use vitamin B12 fortified foods and supplements to meet their needs.

vitamin B12 salmon

Salmon is a good source of Vitamin B12

Commercially, Vitamin B12 is prepared by bacterial fermentation. Fermentation by a variety of microorganisms yields a mixture of methylcobalamin, hydroxocobalamin, and adenosylcobalamin. Since multiple species of propionibacterium produce no exotoxins or endotoxins and have been granted GRAS status (generally regarded as safe) by the United States Food and Drug Administration, they are the preferred bacterial fermentation organisms for vitamin B12 production.

Methylcobalamin and 5-deoxyadenosylcobalamin are the forms of vitamin B12 used in the human body (called coenzyme forms). The form of cobalamin used in many some nutritional supplements and fortified foods, cyanocobalamin, is readily converted to 5-deoxyadenosylcobalamin and methylcobalamin in the body.

Hydroxocobalamin is the direct precursor of methylcobalamin and 5-deoxyadenosylcobalamin. In mammals, cobalamin is a cofactor for only two enzymes, methionine synthase (MS) and L-methylmalonyl-coenzyme A mutase (MUT).

Unlike most other vitamins, B12 is stored in substantial amounts, mainly in the liver, until it is needed by the body. If a person stops consuming the vitamin, the body’s stores of this vitamin usually take about 3 to 5 years to exhaust. Vitamin B12 is primarily stored in the liver as 5-deoxyadenosylcobalamin, but is easily converted to methylcobalamin.

ABSORPTION OF VITAMIN B12

Vitamin B12, bound to protein in food, is released by the activity of hydrochloric acid and gastric protease in the stomach. Intestinal absorption of vitamin B12 requires successively three different protein molecules: Haptocorrin, Intrinsic Factor and Transcobalamin II. If there are deficiencies in any of these factors absorption of Vitamin B12 can be seriously decreased.

When vitamin B12 is added to fortified foods and dietary supplements, it is already in free form and, thus, does not require the separation from food protein step. Free vitamin B12 then combines with intrinsic factor, a glycoprotein secreted by the stomach’s parietal cells, and the resulting complex undergoes absorption within the distal ileum by receptor-mediated endocytosis.

Approximately 56% of a 1 mcg oral dose of vitamin B12 is absorbed, but absorption decreases drastically when the capacity of intrinsic factor is exceeded (at 1–2 mcg of vitamin B12).

Vitamin B12 – 5 mg methylcobalamin sublingual lozenge

Vitamin B12 – 5 mg Methylcobalamin sublingual lozenge.

VITAMIN B12 DEFICIENCY

Vitamin B12 deficiency can be difficult to detect, especially since the symptoms of a vitamin B12 deficiency can be similar to many common symptoms, such as feeling tired or unfocused, experienced by people for a variety of reasons.

Vitamin B12 deficiency is commonly associated with chronic stomach inflammation, which may contribute to an autoimmune vitamin B12 malabsorption syndrome called pernicious anemia and to a food-bound vitamin B12 malabsorption syndrome. Poor absorption of vitamin may be related to coeliac disease. Impairment of vitamin B12 absorption can cause megaloblastic anemia and neurologic disorders in deficient subjects. In some cases, permanent damage can be caused to the body when B12 amounts are deficient.

It is noteworthy that normal function of the digestive system required for food-bound vitamin B12 absorption is commonly impaired in individuals over 60 years of age, placing them at risk for vitamin B12 deficiency.

A diagnosis of vitamin B12 deficiency is typically based on the measurement of serum vitamin B12 levels within the blood. However, studies show that about 50 percent of patients with diseases related to vitamin B12 deficiency have normal B12 levels when tested. This can cause individuals to ignore taking in adequate levels of vitamin B12 with potential serious consequences.

FUNCTIONS AND ISSUES ASSOCIATED WITH VITAMIN B12 STATUS IN THE BODY

  • Vitamin B12 or cobalamin plays essential roles in folate metabolism and in the synthesis of the citric acid cycle intermediate, succinyl-CoA.
  • Vitamin B12 deficiency is commonly associated with chronic stomach inflammation, which may contribute to an autoimmune vitamin B12 malabsorption syndrome called pernicious anemia and to a food-bound vitamin B12 malabsorption syndrome. Impairment of vitamin B12 absorption can cause megaloblastic anemia and neurologic disorders in deficient subjects.
  • Normal function of the digestive system required for food-bound vitamin B12 absorption is commonly impaired in individuals over 60 years of age, placing them at risk for vitamin B12 deficiency.
  • Vitamin B12 and folate are important for homocysteine metabolism. Elevated homocysteine levels in blood are a risk factor for cardiovascular disease (CVD). B vitamin supplementation has been proven effective to control homocysteine levels.
  • The preservation of DNA integrity is dependent on folate and vitamin B12 availability. Poor vitamin B12 status has been linked to increased risk of breast cancer in some, but not all, observational studies.
  • Low maternal vitamin B12 status has been associated with an increased risk of neural tube defects (NTD), but it is not known whether vitamin B12 supplementation could help reduce the risk of NTD.
  • Vitamin B12 is essential for the preservation of the myelin sheath around neurons and for the synthesis of neurotransmitters. A severe vitamin B12 deficiency may damage nerves, causing tingling or loss of sensation in the hands and feet, muscle weakness, loss of reflexes, difficulty walking, confusion, and dementia.
  • While hyperhomocysteinemia may increase the risk of cognitive impairment, it is not clear whether vitamin B12 deficiency contributes to the risk of dementia in the elderly. Although B-vitamin supplementation lowers homocysteine levels in older subjects, the long-term benefit is not yet known.
  • Both depression and osteoporosis have been linked to diminished vitamin B12 status and high homocysteine levels.
  • The long-term use of certain medications, such as inhibitors of stomach acid secretion, can adversely affect vitamin B12 absorption.
  • Vitamin B12 is required for proper red blood cell formation, neurological function, and DNA synthesis.

MORE DETAILS ASSOCIATED WITH VITAMIN B12 STATUS IN THE BODY

1. Vitamin B12 is required for proper red blood cell formation, neurological function, and DNA synthesis. Vitamin B12 as methylcobalamin functions as a cofactor for methionine synthase. Methionine synthase (MS) catalyzes the conversion of homocysteine to methionine. Methionine along with ATP is required for the formation of S-adenosylmethionine (SAMe), a universal methyl donor for almost 100 different substrates, including DNA, RNA, hormones, proteins, and lipids.
2. Vitamin B12 as 5-deoxyadenosylcobalamin functions as a cofactor along with L-methylmalonyl-CoA mutase (MUT) to convert L-methylmalonyl-CoA to succinyl-CoA in the degradation of propionate, an essential biochemical reaction in fat and protein metabolism. Succinyl-CoA is also required for hemoglobin synthesis.
Metabolic Pathway

 

3. Vitamin B12, bound to protein in food, is released by the activity of hydrochloric acid and gastric protease in the stomach. When synthetic vitamin B12 is added to fortified foods and dietary supplements, it is already in free form and, thus, does not require this separation step. Free vitamin B12 then combines with intrinsic factor, a glycoprotein secreted by the stomach’s parietal cells, and the resulting complex undergoes absorption within the distal ileum by receptor-mediated endocytosis. Approximately 56% of a 1 mcg oral dose of vitamin B12 is absorbed, but absorption decreases drastically when the capacity of intrinsic factor is exceeded (at 1–2 mcg of vitamin B12).

4. Pernicious anemia is an autoimmune disease that affects the gastric mucosa and results in gastric atrophy. This leads to the destruction of parietal cells, achlorhydria, and failure to produce intrinsic factor, resulting in vitamin B12 malabsorption. If pernicious anemia is left untreated, it causes vitamin B12 deficiency, leading to megaloblastic anemia and neurological disorders, even in the presence of adequate dietary intake of vitamin B12.

5. Vitamin B12 status is typically assessed via serum or plasma vitamin B12 levels. Values below approximately 170–250 pg/mL (120–180 picomol/L) for adults indicate a vitamin B12 deficiency. However, evidence suggests that serum vitamin B12 concentrations might not accurately reflect intracellular concentrations. An elevated serum homocysteine level (values >13 micromol/L) might also suggest a vitamin B12 deficiency. However, this indicator has poor specificity because it is influenced by other factors, such as low vitamin B6 or folate levels. Elevated methylmalonic acid levels (values >0.4 micromol/L) might be a more reliable indicator of vitamin B12 status because they indicate a metabolic change that is highly specific to vitamin B12 deficiency.

6. Vitamin B12 deficiency is characterized by megaloblastic anemia, fatigue, weakness, constipation, loss of appetite, and weight loss. Neurological changes, such as numbness and tingling in the hands and feet, can also occur . Additional symptoms of vitamin B12 deficiency include difficulty maintaining balance, depression, confusion, dementia, poor memory, and soreness of the mouth or tongue. The neurological symptoms of vitamin B12 deficiency can occur without anemia, so early diagnosis and intervention is important to avoid irreversible damage. During infancy, signs of a vitamin B12 deficiency include failure to thrive, movement disorders, developmental delays, and megaloblastic anemia. Many of these symptoms are general and can result from a variety of medical conditions other than vitamin B12 deficiency.

7. Typically, vitamin B12 deficiency is treated with vitamin B12 injections, since this method bypasses potential barriers to absorption. However, high doses of oral vitamin B12 can also be effective. The authors of a review of randomized controlled trials comparing oral with intramuscular vitamin B12 concluded that 2,000 mcg (I like 5,000 mcg) of oral vitamin B12 daily, followed by a decreased daily dose of 1,000 mcg and then 1,000 mcg weekly and finally, monthly might be as effective as intramuscular administration. Overall, an individual patient’s ability to absorb vitamin B12 is the most important factor in determining whether vitamin B12 should be administered orally or via injection. In most countries, the practice of using intramuscular vitamin B12 to treat vitamin B12 deficiency has remained unchanged.

8. Large amounts of folate can mask the damaging effects of vitamin B12 deficiency by correcting the megaloblastic anemia caused by vitamin B12 deficiency without correcting the neurological damage that also occurs. Moreover, preliminary evidence suggests that high serum folate levels might not only mask vitamin B12 deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B12 deficiency. Permanent nerve damage can occur if vitamin B12 deficiency is not treated. For these reasons, folate intake from fortified food and supplements should not exceed 1,000 mcg daily in healthy adults.

Groups at Risk of Vitamin B12 Deficiency

The main causes of vitamin B12 deficiency include vitamin B12 malabsorption from food, pernicious anemia, postsurgical malabsorption, and dietary deficiency. However, in many cases, the cause of vitamin B12 deficiency is unknown. The following groups are among those most likely to be vitamin B12 deficient.

Older adults: Atrophic gastritis, a condition affecting 10%–30% of older adults, decreases secretion of hydrochloric acid in the stomach, resulting in decreased absorption of vitamin B12. Decreased hydrochloric acid levels might also increase the growth of normal intestinal bacteria that use vitamin B12, further reducing the amount of vitamin B12 available to the bodY.

Individuals with atrophic gastritis are unable to absorb the vitamin B12 that is naturally present in food. Most, however, can absorb the synthetic vitamin B12 added to fortified foods and dietary supplements. As a result, the IOM recommends that adults older than 50 years obtain most of their vitamin B12 from vitamin supplements or fortified foods. However, some elderly patients with atrophic gastritis require doses much higher than the RDA to avoid subclinical deficiency.

Individuals with pernicious anemia: Pernicious anemia, a condition that affects 1%–2% of older adults, is characterized by a lack of intrinsic factor. Individuals with pernicious anemia cannot properly absorb vitamin B12 in the gastrointestinal tract. Pernicious anemia is usually treated with intramuscular vitamin B12. However, approximately 1% of oral vitamin B12 can be absorbed passively in the absence of intrinsic factor, suggesting that high oral doses of vitamin B12 might also be an effective treatment.

Individuals with gastrointestinal disorders: Individuals with stomach and small intestine disorders, such as celiac disease and Crohn’s disease, may be unable to absorb enough vitamin B12 from food to maintain healthy body stores. Subtly reduced cognitive function resulting from early vitamin B12 deficiency might be the only initial symptom of these intestinal disorders, followed by megaloblastic anemia and dementia.

Individuals who have had gastrointestinal surgery: Surgical procedures in the gastrointestinal tract, such as weight loss surgery or surgery to remove all or part of the stomach, often result in a loss of cells that secrete hydrochloric acid and intrinsic factor. This reduces the amount of vitamin B12, particularly food-bound vitamin B12, that the body releases and absorbs. Surgical removal of the distal ileum also can result in the inability to absorb vitamin B12. Individuals undergoing these surgical procedures should be monitored preoperatively and postoperatively for several nutrient deficiencies, including vitamin B12 deficiency.

Vegetarians: Strict vegetarians and vegans are at greater risk than lacto-ovo vegetarians and non-vegetarians of developing vitamin B12 deficiency because natural food sources of vitamin B12 are limited to animal foods. Fortified breakfast cereals and fortified nutritional yeasts are some of the only sources of vitamin B12 from plants and can be used as dietary sources of vitamin B12 for strict vegetarians and vegans. Fortified foods vary in formulation, so it is important to read the Nutrition Facts labels on food products to determine the types and amounts of added nutrients they contain.

Pregnant and lactating women who follow strict vegetarian diets and their infants: Vitamin B12 crosses the placenta during pregnancy and is present in breast milk. Exclusively breastfed infants of women who consume no animal products may have very limited reserves of vitamin B12 and can develop vitamin B12 deficiency within months of birth. Undetected and untreated vitamin B12 deficiency in infants can result in severe and permanent neurological damage.

The American Dietetic Association recommends supplemental vitamin B12 for vegans and lacto-ovo vegetarians during both pregnancy and lactation to ensure that enough vitamin B12 is transferred to the fetus and infant. Pregnant and lactating women who follow strict vegetarian or vegan diets should consult with a pediatrician regarding vitamin B12 supplements for their infants and children.

Health Risks from Excessive Vitamin B12

The IOM did not establish a UL for vitamin B12 because of its low potential for toxicity. In Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline, the IOM states that “no adverse effects have been associated with excess vitamin B12 intake from food and supplements in healthy individuals”.

Findings from intervention trials support these conclusions. In the NORVIT and HOPE 2 trials, vitamin B12 supplementation (in combination with folic acid and vitamin B6) did not cause any serious adverse events when administered at doses of 0.4 mg for 40 months (NORVIT trial) and 1.0 mg for 5 years (HOPE 2 trial).

Interactions with Medications

Vitamin B12 has the potential to interact with certain medications. In addition, several types of medications might adversely affect vitamin B12 levels. A few examples are provided below. Individuals taking these and other medications on a regular basis should discuss their vitamin B12 status with their healthcare providers.

Chloramphenicol: Chloramphenicol (Chloromycetin®) is a bacteriostatic antibiotic. Limited evidence from case reports indicates that chloramphenicol can interfere with the red blood cell response to supplemental vitamin B12 in some patients.

Proton pump inhibitors: Proton pump inhibitors, such as omeprazole (Prilosec®) and lansoprazole (Prevacid®), are used to treat gastroesophageal reflux disease and peptic ulcer disease. These drugs can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach. However, the evidence is conflicting on whether proton pump inhibitor use affects vitamin B12 status. As a precaution, healthcare providers should monitor vitamin B12 status in patients taking proton pump inhibitors for prolonged periods.

H2 receptor antagonists: Histamine H2 receptor antagonists, used to treat peptic ulcer disease, include cimetidine (Tagamet®), famotidine (Pepcid®), and ranitidine (Zantac®). These medications can interfere with the absorption of vitamin B12 from food by slowing the release of hydrochloric acid into the stomach. Although H2 receptor antagonists have the potential to cause vitamin B12 deficiency, no evidence indicates that they promote vitamin B12 deficiency, even after long-term use. Clinically significant effects may be more likely in patients with inadequate vitamin B12 stores, especially those using H2 receptor antagonists continuously for more than 2 years.

Metformin: Metformin, a hypoglycemic agent used to treat diabetes, might reduce the absorption of vitamin B12, possibly through alterations in intestinal mobility, increased bacterial overgrowth, or alterations in the calcium-dependent uptake by ileal cells of the vitamin B12-intrinsic factor complex. Small studies and case reports suggest that 10%–30% of patients who take metformin have reduced vitamin B12 absorption. In a randomized, placebo controlled trial in patients with type 2 diabetes, metformin treatment for 4.3 years significantly decreased vitamin B12 levels by 19% and raised the risk of vitamin B12 deficiency by 7.2% compared with placebo. Some studies suggest that supplemental calcium might help improve the vitamin B12 malabsorption caused by metformin, but not all researchers agree.

REFERENCES

FROM: https://academic.oup.com/ajcn/article/71/2/514/4729184
Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring Study

The American Journal of Clinical Nutrition, Volume 71, Issue 2, 1 February 2000, Pages 514–522, https://doi.org/10.1093/ajcn/71.2.514

ABSTRACT

Background: Low vitamin B-12 status is prevalent among the elderly, but few studies have examined the association between vitamin B-12 status and intake.
Objective: We hypothesized that vitamin B-12 concentrations vary according to intake source.
Design: Plasma concentrations and dietary intakes were assessed cross-sectionally for 2999 subjects in the Framingham Offspring Study. The prevalence of vitamin B-12 concentrations <148, 185, and 258 pmol/L was examined by age group (26–49, 50–64, and 65–83 y), supplement use, and the following food intake sources: fortified breakfast cereal, dairy products, and meat.
Results: Thirty-nine percent of subjects had plasma vitamin B-12 concentrations <258 pmol/L, 17% had concentrations <185 pmol/L, and 9% had concentrations <148 pmol/L, with little difference between age groups. Supplement users were significantly less likely than non-supplement-users to have concentrations <185 pmol/L (8% compared with 20%, respectively). Among non-supplement-users, there were significant differences between those who consumed fortified cereal >4 times/wk (12%) and those who consumed no fortified cereal (23%) and between those in the highest and those in the lowest tertile of dairy intake (13% compared with 24%, respectively), but no significant differences by meat tertile. Regression of plasma vitamin B-12 on log of intake, by source, yielded significant slopes for each contributor adjusted for the others. For the total group, b = 40.6 for vitamin B-12 from vitamin supplements. Among non-supplement-users, b = 56.4 for dairy products, 35.2 for cereal, and 16.7 for meat. Only the meat slope differed significantly from the others.
Conclusions: In contrast with previous reports, plasma vitamin B-12 concentrations were associated with vitamin B-12 intake. Use of supplements, fortified cereal, and milk appears to protect against lower concentrations. Further research is needed to investigate possible differences in bioavailability.

 

INTERNET REFERENCES

0

BONE FRACTURES SUPPORT

Dr. Hank Liers, PhD bone fracturesSeveral years ago a customer asked me for a program that could be helpful to those suffering with bone fractures. A relative had been diagnosed with multiple bone fractures in his ankle.

Since I have been counseling individuals regarding natural treatments for supporting those with bone fractures and injury for many years, I was able to provide a comprehensive program that could be helpful in recovery. More recently, we have introduced products and tools that can be even more supportive. Therefore, in this article we are providing an update to the bone fractures program.

Clearly, the need for such a program is great. According to the American Academy of Orthopaedic Surgeons (AAOS), about six million individuals suffer fractures each year in North America. In about 5–10 percent of cases, patients suffer either delayed healing or fractures that do not heal.

The problem of bone fractures is especially troubling for the elderly, many of whom suffer from osteoporosis, a condition in which bones become weak and break more easily. For an older person, a fracture affects quality of life because it significantly reduces function and mobility, and requires an extended period of recuperation.

The bone fracture program set forth below also works well to support the healing of other types of bone problems, including broken bones, bone surgery, osteoporosis, and wisdom tooth removal.

THE BONE FRACTURE PROGRAM

IMPORTANCE OF FOUNDATIONAL SUPPLEMENTS

The first element of the program consists of Foundational Supplements. This group of supplements ensures the body is being supplied with all of the basic elements needed for optimal function. The primary foundational supplements consists of 1) a therapeutic multivitamin and mineral formula, 2) a complete buffered Vitamin C with antioxidants formula, 3) an essential fatty acids supplement, and 4) a high-RNA superfoods formula.

Our Foundational Supplements are described in great detail on the HPDI website where we provide a free downloadable e-book “The Need for Foundational Supplements” (.pdf). Suffice it to say that the foundational supplements are a essential part of the program that ensure healing will take place quickly and effectively. I encourage everyone to become familiar with this information as foundational supplements are basic to any wellness or healing program.

bone fractures

ENHANCEMENT FORMULAS ARE CRITICAL FOR HEALING BONE FRACTURES

The second element of the program for healing bone fractures consists of Enhancement Formulas that strengthen the body as it relates to dealing with the damaging effects of bone fractures. These include a Vitamin D3 formula with the synergistic nutrients of Vitamin A and Vitamin K2 that are required for the rebuilding of bone as well as strengthening the body in many other ways. The HPDI Vitamin D3 Plus formula to designed to specifically address this need.

A second Enhancement Formula in this program is our comprehensive Bone Guardian formula that is based upon micronized veal bone that provides hydroxyapatite (Ca10(PO4)6(OH)2). Hydroxyapatite is the basic component of human bone that is 50% by volume and 70% by weight. Whereas the Vitamin D3 Plus formula builds the bone matrix, the Bone Guardian fills in the matrix with materials such as calcium, phosphorus, magnesium, boron, zinc, manganese, copper, silica, and strontium. HPDI sells Bone Guardian in both the tablet and capsule forms. The capsule form may be better for older people who are able to absorb capsules better than tablets.

A third Enhancement Formula to the program is additional amounts of Vitamin C. Vitamin C is known to participate in every step of the process of building collagen, which is a key component of bone. Vitamin C has been shown to increase bone mass density. We recommend slowly increasing your intake of buffered Vitamin C until you reach your bowel tolerance. This can be accomplished by increasing your intake of HPDI’s foundational supplement PRO-C™ formula. The PRO-C has the added value of containing oligomeric proanthocyanidins (OPCs) from grape seed, skin, & pulp. OPCs in the body are able to strongly crosslink and strengthen new and damaged collagen fibers needed needed to repair bones, ligaments, tendons, and cartilage.

SPECIFIC CONDITION FORMULAS TARGET BONE FRACTURES

The third element in the program are Specific Condition Formulas that directly address issues related to bone fractures. The first of these is the addition of a joint formula that allows the body to build and repair connective tissue and to significantly reduce inflammation in the area of bone fractures. In most cases of fractures there will be damaged ligaments and tendons as well as inflammation in the area.

HPDI’s Joint Health Formula includes the ingredients glucosamine hydrochloride, MSM, and sea cucumber (a significant source of chondroiten sulfate) in addition to anti-inflammatory substances such as turmeric extract, rutin, and grape extract (seed, pulp, and skin) that have been extremely helpful in both repairing connective tissue and reducing pain and inflammation.

A second strongly recommended condition-specific formula is proteolytic enzymes. Because it is highly likely in the case of bone fractures and injury that there is significant tissue damage, a formula with pancreatic and plant enzymes as well as anti-inflammatories can be extremely helpful is clearing out the damaged tissue. This gives the body the opportunity to begin the rebuilding process much sooner.

Our recommended PROLYT formula contains the proteolytic enzymes bromelain, trypsin (pancreatic enzyme), and chymotrypsin (pancreatic enzyme), and the polyphenols/bioflavonoids turmeric extract (95% curcuminoids), quercetin and oligomeric proanthocyanidins (OPCs) from grape extract. This formula when taken on an empty stomach between meals is quickly absorbed into the bloodstream and goes to work cleaning up any damaged tissues in the area surrounding a fracture and assists in reducing pain and inflammation.

TOPICAL MAGNESIUM CHLORIDE FOR PAIN AND RAPID HEALING

A final Specific Condition Formula that I highly recommend for healing bone fractures is to rub Ancient Minerals Magnesium Oil on and surrounding the fracture area. Bones cannot heal without having adequate amounts of magnesium available. Unfortunately, many people are deficient in magnesium and even taking oral magnesium cannot easily provide sufficient amounts to an area with a bone fracture. Magnesium oil (mostly magnesium chloride) is quickly absorbed transdermally (via skin) and often can provide rapid healing and pain relief!

BODY pH COULD BE A FACTOR IN HEALING BONE FRACTURES

The processed food diets with a high protein and low vegetable content consumed by many people in the U.S. and elsewhere often produce conditions in the body of acidity. This in turn leads to decreased oxygenation of cells and encourages a greater amount of anaerobic processes in metabolism. In addition, when the body is acidic calcium can be taken from bones in order to balance the acidity. This can lead to poor healing of bone fractures.

In order to counter acidic conditions in the body we recommend the use of HPDI’s pH ADJUST formula. As a dietary supplement, take 1 gm (about a rounded ¼ tsp) in 4-8 ounces of purified water preferably away from food, or as directed by a health care professional.  For extremely acidic conditions, try 4–10 doses per day, depending on acidity level. Use pH paper to ensure pH levels remain balanced, and do not become too alkaline (alkalosis may occur above pH 8.2).

TESTING pH LEVELS: The best way to test pH levels is to use litmus paper, which HPDI offers in rolls (Hydrion brand) for this purpose. You can test salivary or urinary pH. In order to test salivary pH, simply use a small strip of pH paper to dip into a small amount of saliva. Advantages of pH paper include rapid results, ease of use, and cost effectiveness.

pH Paper bone fractures protocol

The color of the litmus paper indicates the pH level of the body fluid tested. Most litmus paper comes with an indicator chart showing colors corresponding to various pH levels. Alkaline states will generally produce a dark green, blue or purple color (most basic). Acidic states will range from yellow (most acidic) to light green.

Salivary pH and urinary pH are significantly affected by recent food consumption and other factors, so it it best to test pH hours after meals or in the morning when you awake. We prefer to measure urinary pH since results are more consistent. Measuring urinary pH is a simple as placing a few drops of urine on the paper or dipping the paper into a sample cup of fresh urine.

A consistent pH measurement of less than 7.0 indicates that you are too acidic (values less than 6.2 show extreme acidity). This indicates that you should consume more alkaline forming foods (usually vegetables) and/or take pH ADJUST. A single dose of pH ADJUST can change conditions in the body from acidic to alkaline within a few hours.

GENETIC VARIATIONS IN YOUR VITAMIN D RECEPTOR GENE (VDR) MAY BE AN IMPORTANT FACTOR

The VDR gene (contained in every cell of the body) provides instructions for making a protein called vitamin D receptor (VDR), which allows the body to respond appropriately to vitamin D. This vitamin can be acquired from foods in the diet or made in the body by exposure to from sunlight. Vitamin D is involved in maintaining the proper balance of several minerals in the body, including calcium and phosphate, which are essential for the normal formation of bones and teeth. One of vitamin D’s major roles is to control the absorption of calcium and phosphate from the intestines into the bloodstream. Vitamin D is also involved in several process unrelated to bone formation.

VDR attaches (binds) to the active form of vitamin D, known as calcitriol. Calcitrol is produced in the body from Vitamin D3 (cholecalciferol) in the liver and kidneys. The interaction with calcitriol allows VDR to partner with another protein called retinoid X receptor (RXR). The resulting complex of proteins then binds to particular regions of DNA, known as vitamin D response elements, and regulates the activity of vitamin D-responsive genes. By turning these genes on or off, VDR helps control calcium and phosphate absorption and other processes.

In recent years, genetic tests have become available that show VDR variations can cause serious conditions related to low bone density and other important body functions such a higher blood glucose levels or lower immune system function. If a person is having little success in healing bone fractures, it is possible that VDR variations are a key factor of causation.

In such cases, we recommend having genetic testing done to determine if VDR variations are present. Recently, HPDI has teamed with a genetic testing company (BodySync, Inc.) and sells the BodySync test kits on our Reseller site. Please click here to see our blog article regarding the BodySync genetic test. Among the genes tested for in the test are three variations of the VDR gene. Resellers can purchase the test kits directly from HPDI and retail customers can call us  (800-228-4265) to find out how we can help them get a test kit and support them with any associated counseling regarding the results.

SUGGESTED SUPPLEMENT SCHEDULE – BONE FRACTURES

I have included all of the above supplements including recommended dosages plus more related to having an excellent diet in the table provided below.

Description AM Noon PM Night Comments
PRO-C 2 caps 2 caps 2 caps Take with meals or with snack.
Bone Guardian 

Bone Guardian Caps (easier to absorb)

3 tabs

3 caps

 

3 caps

3 tabs

3 caps

Take with meals.

Take with meals.

Mighty Multi-Vite! or
Multi Two — Multivitamins
2 caps or
1 tab
2 caps or
1 tab
Take with meals.
Essential Fats plus E 2 softgel 2 softgel 2 softgel Take with meals.
PROLYT – Proteolytic Enzyme Formula 2 caps 2 caps 2 caps 2 caps Take between meals.
Buffered Vitamin C, Tablets — 1,000 mg (1 gm) or Powder (1/4 tsp = 1 gm) 2 tabs or
1/2 tsp
2 tabs or
1/2 tsp
2 tabs or 1/2 tsp 2 tabs or 1/2 tsp Best with meals, but other times are okay. Start with 2 tabs or 1/2 tsp twice per day and add another 2 tabs or 1/2 tsp every few days until you are taking 8 tabs or 2 tsp per day.
Vitamin D3 Plus 5,000 IU 1 softgel 1 softgel Take with meals. Reduce to 1 softgel after 2 months.
Joint Health Formula 2 caps 2 caps 2 caps Take between meals and away from Bone Guardian.
Magnesium Oil 10 pumps 10 pumps 10 pumps 10 pumps Spray on affected area – or nearby area.
Rejuvenate! Plus or
Rejuvenate! (original)
1 scoop 1 scoop Take as a meal by itself or with fruit/berries.

ADDITIONAL NUTRIENTS FOR BONE FRACTURES

Additional nutrients that may be helpful include pH ADJUST (to balance excess acidity in the body),  Warrior Mist™ for pain relief (rub on adjacent area several times daily), Echinacea (as drops or capsules), N-Acetyl-L-Cysteine – NAC (2 gms per day), Progesterone Cream – for women (1/4–1/2 tsp twice daily), and Prescript-Assist™ probiotics (2 capsules daily) if on antibiotics.

PROPER DIET IS ESSENTIAL

Consume a diet that provides good amounts of protein which is needed by the body to support the healing of bone fractures. Eat meats, poultry and fish (e.g., sardines, salmon, mackerel) in the amount of a 5–10 ounces per day. Ensure a good intake of organic vegetables, including high levels of dietary fiber. Drink 16 oz per day of fresh vegetable juices from carrot, celery, beets, cabbage, etc.

Other healthy foods (preferably organic) include fruits, whole grains (e.g., brown rice, millet, and quinoa), beans, nuts and seeds (sunflower, chia, flax, pumpkin, almond, walnut and sesame in small amounts — 2 or 4 ounces — are good). Try eating Hank’s Vegetable Soup several times a week. Avoid all sweets (sugar), processed/refined foods (white bread and pasta), preservatives, and artificial flavors and colors. Vary your diet.

HYDROTHERAPY (WATER THERAPY) FOR BONE FRACTURES

An additional treatment that can be useful is hydrotherapy. In particular, hot and cold showers are a very effective way to move the blood and create circulation. This can speed up both detoxification and delivery of healing nutrients to the area of a bone fracture. Here’s how to do this. Once daily, take a complete hot and cold shower. You will start with hot water for one minute, then cold for one minute. Repeat this seven (7) times so the shower should last about 15 minutes.

Another time, daily, you can perform a complete hot and cold shower routine again or a partial one just applying the water directly to or near the area where there is a bone fracture. While you are doing both hot and cold showers, pay special attention to any affected area and massage it as vigorously as is safe and comfortable. If a shower is impossible, then alternate hot packs and ice packs on the area of the bone fracture.

BONE FRACTURES – CONCLUSION

By following the recommendations and suggested supplement schedule, healing time for bone fractures can be significantly reduced and fractures may heal more completely with fewer complications. By ensuring your body receives the proper nutrients it needs to heal itself, and by engaging in other relevant practices (e.g., hydrotherapy), you and/or your loved ones may be able to deal with bone fractures successfully, and continue a healthy, vibrant lifestyle.

ADDITIONAL RESOURCES

HPDI REJUVENATION PROGRAM

REJUVENATION PROGRAM PART 6 (INCLUDES HYDROTHERAPY)

REJUVENATE!™ SUPERFOODS

ULTIMATE PROTECTOR™

“FRED’S FAVORITE VEGETABLE JUICE RECIPE: ‘THE DOCTOR'”