0

VITAMIN B12: THE NEGLECTED NUTRIENT

Dr. Hank Liers, PhD vitamin B12 B-12 cobalamin methylcobalaminI previously wrote METHYLATION CYCLE, GENETICS, B VITAMINS in which I considered in-depth how the Methylation Cycle functions, how genetics affect metabolic pathways, and how B vitamins (including vitamin B12, folate, vitamin B6, and vitamin B2) are used in Methylation Cycle pathways. In today’s article, I take an in-depth view of what you need to know about vitamin B12, including the effects of not having sufficient amounts of Vitamin B12 in the body.

Vitamin B12 is one of eight B vitamins. It is the largest and most structurally complicated vitamin. It consists of a class of chemically related compounds (vitamers), all of which show physiological activity. It contains the biochemically rare element cobalt positioned in the center of a chemical ring structure.

Vitamin B12 (also called cobalamin) is a water-soluble vitamin that is involved in the metabolism of every cell of the human body. It is a cofactor in DNA synthesis, and in both fatty acid and amino acid metabolism. It is particularly important in the normal functioning of the nervous system via its role in the synthesis of myelin and in the maturation of developing red blood cells in the bone marrow.

vitamin B12

Vitamin B12 contains the biochemically rare element cobalt positioned in the center of a chemical ring structure.

YOUR NEED FOR VITAMIN B12

Vitamin B12 deficiency is thought to be one of the leading nutritional deficiencies in the world. An extensive 2004 study showed that deficiency is a major health concern in many parts of the world, including the North America, Central and South America, India, and certain areas in Africa. It is estimated that 40 percent of people may have low levels of vitamin B12.

Vitamin B12 affects your mood, energy level, memory, nervous system, heart, skin, hair, digestion and more. It is a key nutrient regarding adrenal fatigue and multiple metabolic functions including enzyme production, DNA synthesis, and hormonal balance.

Because of vitamin B12’s extensive roles within the body, a vitamin deficiency can show up in many different symptoms, such as chronic fatigue, mood disorders such as depression, chronic stress, and low energy.

SOURCES OF VITAMIN B12

The only organisms to produce vitamin B12 are certain bacteria and archaea. Some of these bacteria are found in the soil around the grasses that ruminants eat. They are taken into the animal, proliferate, form part of their gut flora, and continue to produce vitamin B12.

Products of animal origin such as beef (especially liver), chicken, pork, eggs, dairy, clams, and fish constitute the primary food source of vitamin B12. Older individuals and vegans are advised to use vitamin B12 fortified foods and supplements to meet their needs.

vitamin B12 salmon

Salmon is a good source of Vitamin B12

Commercially, Vitamin B12 is prepared by bacterial fermentation. Fermentation by a variety of microorganisms yields a mixture of methylcobalamin, hydroxocobalamin, and adenosylcobalamin. Since multiple species of propionibacterium produce no exotoxins or endotoxins and have been granted GRAS status (generally regarded as safe) by the United States Food and Drug Administration, they are the preferred bacterial fermentation organisms for vitamin B12 production.

Methylcobalamin and 5-deoxyadenosylcobalamin are the forms of vitamin B12 used in the human body (called coenzyme forms). The form of cobalamin used in many some nutritional supplements and fortified foods, cyanocobalamin, is readily converted to 5-deoxyadenosylcobalamin and methylcobalamin in the body.

Hydroxocobalamin is the direct precursor of methylcobalamin and 5-deoxyadenosylcobalamin. In mammals, cobalamin is a cofactor for only two enzymes, methionine synthase (MS) and L-methylmalonyl-coenzyme A mutase (MUT).

Unlike most other vitamins, B12 is stored in substantial amounts, mainly in the liver, until it is needed by the body. If a person stops consuming the vitamin, the body’s stores of this vitamin usually take about 3 to 5 years to exhaust. Vitamin B12 is primarily stored in the liver as 5-deoxyadenosylcobalamin, but is easily converted to methylcobalamin.

ABSORPTION OF VITAMIN B12

Vitamin B12, bound to protein in food, is released by the activity of hydrochloric acid and gastric protease in the stomach. Intestinal absorption of vitamin B12 requires successively three different protein molecules: Haptocorrin, Intrinsic Factor and Transcobalamin II. If there are deficiencies in any of these factors absorption of Vitamin B12 can be seriously decreased.

When vitamin B12 is added to fortified foods and dietary supplements, it is already in free form and, thus, does not require the separation from food protein step. Free vitamin B12 then combines with intrinsic factor, a glycoprotein secreted by the stomach’s parietal cells, and the resulting complex undergoes absorption within the distal ileum by receptor-mediated endocytosis.

Approximately 56% of a 1 mcg oral dose of vitamin B12 is absorbed, but absorption decreases drastically when the capacity of intrinsic factor is exceeded (at 1–2 mcg of vitamin B12).

Vitamin B12 – 5 mg methylcobalamin sublingual lozenge

Vitamin B12 – 5 mg Methylcobalamin sublingual lozenge.

VITAMIN B12 DEFICIENCY

Vitamin B12 deficiency can be difficult to detect, especially since the symptoms of a vitamin B12 deficiency can be similar to many common symptoms, such as feeling tired or unfocused, experienced by people for a variety of reasons.

Vitamin B12 deficiency is commonly associated with chronic stomach inflammation, which may contribute to an autoimmune vitamin B12 malabsorption syndrome called pernicious anemia and to a food-bound vitamin B12 malabsorption syndrome. Poor absorption of vitamin may be related to coeliac disease. Impairment of vitamin B12 absorption can cause megaloblastic anemia and neurologic disorders in deficient subjects. In some cases, permanent damage can be caused to the body when B12 amounts are deficient.

It is noteworthy that normal function of the digestive system required for food-bound vitamin B12 absorption is commonly impaired in individuals over 60 years of age, placing them at risk for vitamin B12 deficiency.

A diagnosis of vitamin B12 deficiency is typically based on the measurement of serum vitamin B12 levels within the blood. However, studies show that about 50 percent of patients with diseases related to vitamin B12 deficiency have normal B12 levels when tested. This can cause individuals to ignore taking in adequate levels of vitamin B12 with potential serious consequences.

FUNCTIONS AND ISSUES ASSOCIATED WITH VITAMIN B12 STATUS IN THE BODY

  • Vitamin B12 or cobalamin plays essential roles in folate metabolism and in the synthesis of the citric acid cycle intermediate, succinyl-CoA.
  • Vitamin B12 deficiency is commonly associated with chronic stomach inflammation, which may contribute to an autoimmune vitamin B12 malabsorption syndrome called pernicious anemia and to a food-bound vitamin B12 malabsorption syndrome. Impairment of vitamin B12 absorption can cause megaloblastic anemia and neurologic disorders in deficient subjects.
  • Normal function of the digestive system required for food-bound vitamin B12 absorption is commonly impaired in individuals over 60 years of age, placing them at risk for vitamin B12 deficiency.
  • Vitamin B12 and folate are important for homocysteine metabolism. Elevated homocysteine levels in blood are a risk factor for cardiovascular disease (CVD). B vitamin supplementation has been proven effective to control homocysteine levels.
  • The preservation of DNA integrity is dependent on folate and vitamin B12 availability. Poor vitamin B12 status has been linked to increased risk of breast cancer in some, but not all, observational studies.
  • Low maternal vitamin B12 status has been associated with an increased risk of neural tube defects (NTD), but it is not known whether vitamin B12 supplementation could help reduce the risk of NTD.
  • Vitamin B12 is essential for the preservation of the myelin sheath around neurons and for the synthesis of neurotransmitters. A severe vitamin B12 deficiency may damage nerves, causing tingling or loss of sensation in the hands and feet, muscle weakness, loss of reflexes, difficulty walking, confusion, and dementia.
  • While hyperhomocysteinemia may increase the risk of cognitive impairment, it is not clear whether vitamin B12 deficiency contributes to the risk of dementia in the elderly. Although B-vitamin supplementation lowers homocysteine levels in older subjects, the long-term benefit is not yet known.
  • Both depression and osteoporosis have been linked to diminished vitamin B12 status and high homocysteine levels.
  • The long-term use of certain medications, such as inhibitors of stomach acid secretion, can adversely affect vitamin B12 absorption.
  • Vitamin B12 is required for proper red blood cell formation, neurological function, and DNA synthesis.

MORE DETAILS ASSOCIATED WITH VITAMIN B12 STATUS IN THE BODY

1. Vitamin B12 is required for proper red blood cell formation, neurological function, and DNA synthesis. Vitamin B12 as methylcobalamin functions as a cofactor for methionine synthase. Methionine synthase (MS) catalyzes the conversion of homocysteine to methionine. Methionine along with ATP is required for the formation of S-adenosylmethionine (SAMe), a universal methyl donor for almost 100 different substrates, including DNA, RNA, hormones, proteins, and lipids.
2. Vitamin B12 as 5-deoxyadenosylcobalamin functions as a cofactor along with L-methylmalonyl-CoA mutase (MUT) to convert L-methylmalonyl-CoA to succinyl-CoA in the degradation of propionate, an essential biochemical reaction in fat and protein metabolism. Succinyl-CoA is also required for hemoglobin synthesis.
Metabolic Pathway

 

3. Vitamin B12, bound to protein in food, is released by the activity of hydrochloric acid and gastric protease in the stomach. When synthetic vitamin B12 is added to fortified foods and dietary supplements, it is already in free form and, thus, does not require this separation step. Free vitamin B12 then combines with intrinsic factor, a glycoprotein secreted by the stomach’s parietal cells, and the resulting complex undergoes absorption within the distal ileum by receptor-mediated endocytosis. Approximately 56% of a 1 mcg oral dose of vitamin B12 is absorbed, but absorption decreases drastically when the capacity of intrinsic factor is exceeded (at 1–2 mcg of vitamin B12).

4. Pernicious anemia is an autoimmune disease that affects the gastric mucosa and results in gastric atrophy. This leads to the destruction of parietal cells, achlorhydria, and failure to produce intrinsic factor, resulting in vitamin B12 malabsorption. If pernicious anemia is left untreated, it causes vitamin B12 deficiency, leading to megaloblastic anemia and neurological disorders, even in the presence of adequate dietary intake of vitamin B12.

5. Vitamin B12 status is typically assessed via serum or plasma vitamin B12 levels. Values below approximately 170–250 pg/mL (120–180 picomol/L) for adults indicate a vitamin B12 deficiency. However, evidence suggests that serum vitamin B12 concentrations might not accurately reflect intracellular concentrations. An elevated serum homocysteine level (values >13 micromol/L) might also suggest a vitamin B12 deficiency. However, this indicator has poor specificity because it is influenced by other factors, such as low vitamin B6 or folate levels. Elevated methylmalonic acid levels (values >0.4 micromol/L) might be a more reliable indicator of vitamin B12 status because they indicate a metabolic change that is highly specific to vitamin B12 deficiency.

6. Vitamin B12 deficiency is characterized by megaloblastic anemia, fatigue, weakness, constipation, loss of appetite, and weight loss. Neurological changes, such as numbness and tingling in the hands and feet, can also occur . Additional symptoms of vitamin B12 deficiency include difficulty maintaining balance, depression, confusion, dementia, poor memory, and soreness of the mouth or tongue. The neurological symptoms of vitamin B12 deficiency can occur without anemia, so early diagnosis and intervention is important to avoid irreversible damage. During infancy, signs of a vitamin B12 deficiency include failure to thrive, movement disorders, developmental delays, and megaloblastic anemia. Many of these symptoms are general and can result from a variety of medical conditions other than vitamin B12 deficiency.

7. Typically, vitamin B12 deficiency is treated with vitamin B12 injections, since this method bypasses potential barriers to absorption. However, high doses of oral vitamin B12 can also be effective. The authors of a review of randomized controlled trials comparing oral with intramuscular vitamin B12 concluded that 2,000 mcg (I like 5,000 mcg) of oral vitamin B12 daily, followed by a decreased daily dose of 1,000 mcg and then 1,000 mcg weekly and finally, monthly might be as effective as intramuscular administration. Overall, an individual patient’s ability to absorb vitamin B12 is the most important factor in determining whether vitamin B12 should be administered orally or via injection. In most countries, the practice of using intramuscular vitamin B12 to treat vitamin B12 deficiency has remained unchanged.

8. Large amounts of folate can mask the damaging effects of vitamin B12 deficiency by correcting the megaloblastic anemia caused by vitamin B12 deficiency without correcting the neurological damage that also occurs. Moreover, preliminary evidence suggests that high serum folate levels might not only mask vitamin B12 deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B12 deficiency. Permanent nerve damage can occur if vitamin B12 deficiency is not treated. For these reasons, folate intake from fortified food and supplements should not exceed 1,000 mcg daily in healthy adults.

Groups at Risk of Vitamin B12 Deficiency

The main causes of vitamin B12 deficiency include vitamin B12 malabsorption from food, pernicious anemia, postsurgical malabsorption, and dietary deficiency. However, in many cases, the cause of vitamin B12 deficiency is unknown. The following groups are among those most likely to be vitamin B12 deficient.

Older adults: Atrophic gastritis, a condition affecting 10%–30% of older adults, decreases secretion of hydrochloric acid in the stomach, resulting in decreased absorption of vitamin B12. Decreased hydrochloric acid levels might also increase the growth of normal intestinal bacteria that use vitamin B12, further reducing the amount of vitamin B12 available to the bodY.

Individuals with atrophic gastritis are unable to absorb the vitamin B12 that is naturally present in food. Most, however, can absorb the synthetic vitamin B12 added to fortified foods and dietary supplements. As a result, the IOM recommends that adults older than 50 years obtain most of their vitamin B12 from vitamin supplements or fortified foods. However, some elderly patients with atrophic gastritis require doses much higher than the RDA to avoid subclinical deficiency.

Individuals with pernicious anemia: Pernicious anemia, a condition that affects 1%–2% of older adults, is characterized by a lack of intrinsic factor. Individuals with pernicious anemia cannot properly absorb vitamin B12 in the gastrointestinal tract. Pernicious anemia is usually treated with intramuscular vitamin B12. However, approximately 1% of oral vitamin B12 can be absorbed passively in the absence of intrinsic factor, suggesting that high oral doses of vitamin B12 might also be an effective treatment.

Individuals with gastrointestinal disorders: Individuals with stomach and small intestine disorders, such as celiac disease and Crohn’s disease, may be unable to absorb enough vitamin B12 from food to maintain healthy body stores. Subtly reduced cognitive function resulting from early vitamin B12 deficiency might be the only initial symptom of these intestinal disorders, followed by megaloblastic anemia and dementia.

Individuals who have had gastrointestinal surgery: Surgical procedures in the gastrointestinal tract, such as weight loss surgery or surgery to remove all or part of the stomach, often result in a loss of cells that secrete hydrochloric acid and intrinsic factor. This reduces the amount of vitamin B12, particularly food-bound vitamin B12, that the body releases and absorbs. Surgical removal of the distal ileum also can result in the inability to absorb vitamin B12. Individuals undergoing these surgical procedures should be monitored preoperatively and postoperatively for several nutrient deficiencies, including vitamin B12 deficiency.

Vegetarians: Strict vegetarians and vegans are at greater risk than lacto-ovo vegetarians and non-vegetarians of developing vitamin B12 deficiency because natural food sources of vitamin B12 are limited to animal foods. Fortified breakfast cereals and fortified nutritional yeasts are some of the only sources of vitamin B12 from plants and can be used as dietary sources of vitamin B12 for strict vegetarians and vegans. Fortified foods vary in formulation, so it is important to read the Nutrition Facts labels on food products to determine the types and amounts of added nutrients they contain.

Pregnant and lactating women who follow strict vegetarian diets and their infants: Vitamin B12 crosses the placenta during pregnancy and is present in breast milk. Exclusively breastfed infants of women who consume no animal products may have very limited reserves of vitamin B12 and can develop vitamin B12 deficiency within months of birth. Undetected and untreated vitamin B12 deficiency in infants can result in severe and permanent neurological damage.

The American Dietetic Association recommends supplemental vitamin B12 for vegans and lacto-ovo vegetarians during both pregnancy and lactation to ensure that enough vitamin B12 is transferred to the fetus and infant. Pregnant and lactating women who follow strict vegetarian or vegan diets should consult with a pediatrician regarding vitamin B12 supplements for their infants and children.

Health Risks from Excessive Vitamin B12

The IOM did not establish a UL for vitamin B12 because of its low potential for toxicity. In Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline, the IOM states that “no adverse effects have been associated with excess vitamin B12 intake from food and supplements in healthy individuals”.

Findings from intervention trials support these conclusions. In the NORVIT and HOPE 2 trials, vitamin B12 supplementation (in combination with folic acid and vitamin B6) did not cause any serious adverse events when administered at doses of 0.4 mg for 40 months (NORVIT trial) and 1.0 mg for 5 years (HOPE 2 trial).

Interactions with Medications

Vitamin B12 has the potential to interact with certain medications. In addition, several types of medications might adversely affect vitamin B12 levels. A few examples are provided below. Individuals taking these and other medications on a regular basis should discuss their vitamin B12 status with their healthcare providers.

Chloramphenicol: Chloramphenicol (Chloromycetin®) is a bacteriostatic antibiotic. Limited evidence from case reports indicates that chloramphenicol can interfere with the red blood cell response to supplemental vitamin B12 in some patients.

Proton pump inhibitors: Proton pump inhibitors, such as omeprazole (Prilosec®) and lansoprazole (Prevacid®), are used to treat gastroesophageal reflux disease and peptic ulcer disease. These drugs can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach. However, the evidence is conflicting on whether proton pump inhibitor use affects vitamin B12 status. As a precaution, healthcare providers should monitor vitamin B12 status in patients taking proton pump inhibitors for prolonged periods.

H2 receptor antagonists: Histamine H2 receptor antagonists, used to treat peptic ulcer disease, include cimetidine (Tagamet®), famotidine (Pepcid®), and ranitidine (Zantac®). These medications can interfere with the absorption of vitamin B12 from food by slowing the release of hydrochloric acid into the stomach. Although H2 receptor antagonists have the potential to cause vitamin B12 deficiency, no evidence indicates that they promote vitamin B12 deficiency, even after long-term use. Clinically significant effects may be more likely in patients with inadequate vitamin B12 stores, especially those using H2 receptor antagonists continuously for more than 2 years.

Metformin: Metformin, a hypoglycemic agent used to treat diabetes, might reduce the absorption of vitamin B12, possibly through alterations in intestinal mobility, increased bacterial overgrowth, or alterations in the calcium-dependent uptake by ileal cells of the vitamin B12-intrinsic factor complex. Small studies and case reports suggest that 10%–30% of patients who take metformin have reduced vitamin B12 absorption. In a randomized, placebo controlled trial in patients with type 2 diabetes, metformin treatment for 4.3 years significantly decreased vitamin B12 levels by 19% and raised the risk of vitamin B12 deficiency by 7.2% compared with placebo. Some studies suggest that supplemental calcium might help improve the vitamin B12 malabsorption caused by metformin, but not all researchers agree.

REFERENCES

FROM: https://academic.oup.com/ajcn/article/71/2/514/4729184
Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring Study

The American Journal of Clinical Nutrition, Volume 71, Issue 2, 1 February 2000, Pages 514–522, https://doi.org/10.1093/ajcn/71.2.514

ABSTRACT

Background: Low vitamin B-12 status is prevalent among the elderly, but few studies have examined the association between vitamin B-12 status and intake.
Objective: We hypothesized that vitamin B-12 concentrations vary according to intake source.
Design: Plasma concentrations and dietary intakes were assessed cross-sectionally for 2999 subjects in the Framingham Offspring Study. The prevalence of vitamin B-12 concentrations <148, 185, and 258 pmol/L was examined by age group (26–49, 50–64, and 65–83 y), supplement use, and the following food intake sources: fortified breakfast cereal, dairy products, and meat.
Results: Thirty-nine percent of subjects had plasma vitamin B-12 concentrations <258 pmol/L, 17% had concentrations <185 pmol/L, and 9% had concentrations <148 pmol/L, with little difference between age groups. Supplement users were significantly less likely than non-supplement-users to have concentrations <185 pmol/L (8% compared with 20%, respectively). Among non-supplement-users, there were significant differences between those who consumed fortified cereal >4 times/wk (12%) and those who consumed no fortified cereal (23%) and between those in the highest and those in the lowest tertile of dairy intake (13% compared with 24%, respectively), but no significant differences by meat tertile. Regression of plasma vitamin B-12 on log of intake, by source, yielded significant slopes for each contributor adjusted for the others. For the total group, b = 40.6 for vitamin B-12 from vitamin supplements. Among non-supplement-users, b = 56.4 for dairy products, 35.2 for cereal, and 16.7 for meat. Only the meat slope differed significantly from the others.
Conclusions: In contrast with previous reports, plasma vitamin B-12 concentrations were associated with vitamin B-12 intake. Use of supplements, fortified cereal, and milk appears to protect against lower concentrations. Further research is needed to investigate possible differences in bioavailability.

 

INTERNET REFERENCES

0

What I’d Really Love to Tell You About the Methylation Cycle

Dr. Hank Liers, PhD geneticsI previously published “Homocysteine Genetics – Coenzyme B Vitamins” in which I considered in-depth how homocysteine (an intermediate chemical in the Methylation Cycle) is formed from methionine, how genetics affects the metabolic pathways, and how B vitamins are used in metabolic pathways. I also wrote “Folate Ingredients – Folinic Acid & 5-MTHF” which discussed how coenzyme folate vitamins are far superior to the synthetic folic acid form. In today’s article, I take a broader view of the topic that encompasses the Methylation Cycle, genetics, and B vitamins.

THE METHYLATION CYCLE

The Methylation Cycle is considered to be one of the most important metabolic pathways in the human body. Its most important function is to provide methyl groups via SAM (S-adenosyl methionine) to hundreds of different body substrates. Methylation is continually occurring in the body, transforming many millions of molecules throughout the body every second. Molecules receive methyl groups, then separate and recombine continuously, transforming and reforming constantly in the ongoing process of life!

As a reminder of the pathways involved in the Methylation Cycle, the following figure provides a flow chart showing the details.

 

Methylation Cycle

Figure 1. Metabolic Pathways in Methylation Cycle

A key purpose of this cycle is to provide methyl groups (CH3) needed by a broad range of of body functions (over 200 different functions). Examples include:

  1. Influences the genetic expression that parents give their children and helps guide the development of the embryo.
  2. Is needed by the nervous system to produce neurotransmitters and maintain the nerves.
  3. Mobilizes fats and cholesterol so they do not accumulate where they are harmful, such as the arteries and liver.
  4. Regulates hormones, including, estrogen, adrenaline, and melatonin.
  5. Detoxifies harmful chemicals and histamine a prime substance involved in inflammation.
  6. Helps repair damaged proteins in the cells so they can function properly.
  7. Protects the DNA in the genome (genetic code) to reduce the chances of mutation.
  8. Creates antioxidants used in the antioxidant defense system.

DESCRIPTION OF PATHWAYS WITHIN THE METHYLATION CYCLE

The overall flow of the Methylation Cycle begins with dietary methionine (an essential amino acid) which combines with ATP (adenosine triphosphate – body energy) to form SAM (S-adenosyl methionine) – the common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. When SAM transfers a methyl group to a body chemical the residue from this reaction leads to the production of homocysteine.

Homocysteine can be converted in the transsulfuration pathway that requires coenzyme vitamin B6 to produce cysteine, glutathione, taurine, and sulfates. These sulfur containing substances provide important antioxidant protection and detoxification functions in the body.

Homocysteine can be converted back to methionine through the betaine (trimethyl glycine) pathway which requires zinc and magnesium. This pathway also requires dietary betaine or choline which the body can convert into betaine.

Also, homocysteine can be converted back to methionine via the remethylation pathway which requires 5-MTHF, coenzyme vitamin B2 and methylcobalamin (B12).

GENETICS

It is important to understand that each of the pathways described above are able to be executed only in the presence of enzymes (shown in blue boxes in the diagram) created by specific genes in your genetic code. For example, Betaine-Homocysteine S-Methyltransferase (BHMT) is the enzyme required in the betaine pathway, Cystathione Beta Synthase (CBS) is the enzyme required in the transsulfuration pathway, and Methylenetetrahydrofolate Reductase (MTHFR) and Methionine Synthase (MS) are enzymes required in the remethylation pathway.

Assuming that you have perfect genetics (no mutations, SNPs, free radical damage, insertions/deletions, etc.), the proper functioning of these pathways are still subjected to the fact that the required vitamins and minerals (vitamin B6, vitamin B2, Folate, vitamin B12, zinc, magnesium, and betaine) need to be provided by your diet or from supplements for the body to function correctly.

In addition, exposure to high levels of toxins from your environment and high levels of stress require that the nutritional needs will be even higher for the pathways to work properly. For example, exposure to high levels of toxins requires that the transsulfuration pathway be more active possibly reducing the amount of available methionine to support necessary methyl transfer reactions.

For these reasons alone the consensus of knowledgeable practitioners is that you should be eating an organic whole foods diet, taking appropriate nutritional supplements, avoiding and eliminating toxins from food, water, and air (living in a clean environment), and avoiding an unduly stressful life. All of these actions fall into the category of Epigenetics which you generally have control over!! Doing these things alone could significantly balance the functioning of your Methylation Cycle and improve your health.

Unfortunately, few people have perfect genetics which often causes the various pathways in the Methylation Cycle to become imbalanced and unable to correct the dysregulation imposed upon the body. For example, the enzyme MTHFR can have heterozygous (single chromosome) genetic variations in up to 50% of certain populations and homozygous genetic variations (both chromosomes) in 10% or more of certain populations.

Some disorders that researchers have associated with MTHFR genetic variations include:

  • Alzheimer’s disease
  • Asthma
  • Atherosclerosis
  • Autism
  • Bipolar disorder
  • Bladder issues
  • Blood clots
  • Breast problems
  • Chemical sensitivity
  • Chronic fatigue syndrome
  • Down syndrome
  • Epilepsy
  • Fibromyalgia
  • Gastric problems
  • Glaucoma
  • Heart murmurs
  • High blood pressure
  • Irritable bowel syndrome
  • Leukemia
  • Male infertility
  • Methotrexate toxicity
  • Migraines with aura
  • Multiple sclerosis
  • Myocardial infarction
  • Nitrous oxide toxicity
  • Parkinson’s disease
  • Pulmonary embolisms
  • Schizophrenia
  • Stroke
  • Thyroid issues
  • Unexplained neurologic disease
  • Vascular dementia

This extensive list is highly significant and tells us that it is very important to have genetic testing done for the genes/enzymes in the Methylation Cycle pathway. I prefer the BodySync genetic test which evaluates the key Methylation Cycle genes plus many other important genes in a single test.

B VITAMINS AND MINERALS

We are strong believers that everyone should start their nutritional program by eating a balanced, organic, whole foods diet. We have been doing this ourselves for the past 30 years. Unfortunately, only a small percentage of people follow this advice and in most cases this leads to poor nutritional status that does not adequately support the body’s needs. This is especially true with respect to obtaining the nutrients needed to support the Methylation Cycle.

Nine of our family members and associates have taken the BodySync genetic test which evaluates the condition of 45 different enzymes including CBS, MTHFR (2 variations), MTR (related to B12 and 5-MTHF as they relate to methionine synthase – MS), and MTRR (related to maintaining B12 levels needed by the MTR enzyme). In every case the results showed at least 2 and up to 4 enzymes had genetic variations. These results indicate that the nutritional requirements for folate as 5-MTHF, vitamin B12 as methylcobalamin, vitamin B6, vitamin B2, magnesium and zinc will likely be significantly greater than normal.

Given the above information, it seems essential for good health to take nutritional supplements that provide the important nutrients. Below I will discuss various formulas that I have developed and refined over many years that are useful especially for the Methylation Cycle.

Please note that Health Products Distributors, Inc. (HPDI) is the preferred supplier of nutritional supplements by the BodySync genetic testing company.

MULTIVITAMINS

When looking at the total needs the body has for nutrients that the body does not produce, including fat soluble vitamins (A, D (some), E, K1 and K2), vitamin C, B vitamins (B1, B2, B3, B5, B6, folate, B12, biotin, choline, and inositol), minerals (Ca, Mg, Zn, Se, Cu, Mn, Cr, Mo, K, boron, and vanadium), and betaine it only seems wise to include as a top priority a Multivitamin that includes all of these in what I term therapeutic amounts (carefully selected after evaluating thousands of research studies carried out over many years.)

In this context, it is important to recognize that every enzymatic reaction in the body requires mineral cofactors in order to carry out its function. A good multivitamin provides many of these required minerals.

Additionally, the multivitamin should contain ingredient forms that research has confirmed to be the most absorbable and usable by the body. These include coenzyme B vitamins, Krebs cycle (citrate, alpha-ketoglutarate, succinate, fumarate, & malate) minerals, and amino acid chelates.

In the context of supporting the Methylation Cycle we are looking for specific forms and amounts of B vitamins that can adequately provide the body’s needs. The means that there should be coenzyme folate as 5-MTHF of at least 400 mcg, coenzyme vitamin B-12 as methylcobalamin of at least 200 mcg, Vitamin B6 (including significant amounts of pyridoxal 5′ phosphate) of at least 40 mg, and Vitamin B2 (including significant amounts of riboflavin 5′ phosphate) of at least 25 mg. In addition, magnesium (100 mg) and zinc (at least 20 mg) should be provided.

Please note that the body’s requirements for magnesium is generally accepted by nutritional experts to be higher than 400 mg daily (and as high as 1,000 mg daily). For this reason we generally recommend that a person take supplemental magnesium (such as HPDI’s MYO-MAG) at levels over 400 mg daily.

The two multivitamin formulas Health Products Distributors provides for adults that meet these requirements (and more) are the Hank & Brian’s Mighty Multi-Vite and Multi Two (in both capsule and tablet forms). Click on the bottles below for technical details.

Hank & Brian's Mighty Multi-Vite multivitamin methylation cycle

Multi Two Caps or Tablets methylation cycle

B COMPLEX

In situations where significant genetic variations are present it may be wise to add a B COMPLEX supplement to the MULTIVITAMIN to provide even larger amounts of the needed B vitamins. HPDI provides a B-Complex-50 product that includes significant amounts of coenzyme forms and contains 50 mg of Vitamin B1, 50 mg of Vitamin B2, 100 mg of Vitamin B3, 50 mg of Vitamin B6, 500 mcg of coenzyme folate (both folinic acid and 5-MTHF), 100 mcg of B12 (both methylcobalamin and hydroxocobalmin), 50 mg of Vitamin B5 (pantothenic acid), 500 mg of Biotin, 50 mg of choline, and 50 mg of inositol. Click on the bottle below for technical details.

B-Complex-50 full spectrum B vitamins with coenzyme forms methylation cycle

FOLATE AS 5-MTHF

In situations where an inadequate diet is present and genetic testing indicates an MTHFR variation (especially a homozygous variation) Health Products Distributors provides a 5-MTHF folate supplement that easily absorbs into the body and can be directly used in combination with Vitamin B12 to convert homocysteine to methionine. Click on the bottle below for technical details.

5-MTHF 1 mg in veggie cap methylation cycle

5-MTHF 1 mg in veggie cap

B-12 as METHYLCOBALAMIN

It is often the case for older patients and vegetarians that Vitamin B12 is deficient. In these cases it is wise to supplement with a significant amount of methylcobalamin to ensure that the Methylation Cycle has sufficient to effectively convert homocysteine into methionine. Health Products Distributors Vitamin B12 contains 5 mg of methylcobalamin in sublingual lozenge form that supports excellent absorption even if swallowed and absorbed by diffusion. Click on the bottle below for technical details.

Vitamin B-12 5 mg methylcobalamin sublingual lozenge methylation cycle

Vitamin B-12 – 5 mg Methylcobalamin sublingual lozenge.

MINERALS

Magnesium and zinc are two important minerals used in the betaine pathway of the Methylation Cycle in which homocysteine is converted back to methionine.

In the body magnesium is involved in more than 400 essential metabolic reactions and is required by the adenosine triphosphate (ATP)-synthesizing protein in mitochondria. ATP, the molecule that provides energy for almost all metabolic processes, exists primarily as a complex with magnesium (MgATP). Therefore, it also is involved in converting methionine to SAM.

Over 300 different enzymes depend on zinc for their ability to catalyze vital chemical reactions. Zinc-dependent enzymes can be found in all known classes of enzymes.

Health Products Distributors provides 100 mg magnesium/vcap in its MYO-MAG supplement which is especially important in increasing ATP in the Krebs Cycle. This product also contains vitamin B1, vitamin B2, and vitamin B6 with substantial amounts of coenzyme forms and manganese. Click on the bottle below for technical details.

MYO-MAG with 100 mg magnesium per serving key B vitamins methylation cycle

MYO-MAG with 100 mg magnesium per serving and key B vitamins.

Health Products Distributors provides 25 mg zinc/serving in its Double Zinc Plus supplement. This formula provides zinc in the picolinate and citrate forms as well as 3 mg of P5P (coenzyme B6). Click on the bottle below for technical details.

Double Zinc Plus supplement with P5P and 25 mg zinc methylation cycle

Double Zinc Plus supplement with P5P and 25 mg zinc

SUMMARY

The Methylation Cycle is recognized as one of the most important metabolic pathways in the human body. When not properly supported by key B vitamins and minerals, the Methylation Cycle can become severely imbalanced which can lead to a very wide range of poor health conditions. Furthermore, genetic variations in the genes that produce important enzymes allowing the Methylation Cycle to function correctly lead to even further imbalances and greater possibility for conditions of poor health.

In this article, I have provided insight into how the Methylation Cycle works and how it can be significantly supported by lifestyle changes regarding diet and environment (Epigenetics) and by specific B vitamins and mineral supplements that I have developed over many years. In addition, we have shown that knowledge gained from genetic testing can further provide a critical understanding of your specific needs so that your health can be optimized.

RELATED HPDI BLOG ARTICLES

Homocysteine Genetics – Coenzyme B Vitamins

 

0

REJUVENATE! LEMONADE – VIDEO

Fred Liers PhD rejuvenate original superfood lemonadeLooking for a natural energy boost? Or a super-power-up, pick-me-up drink? Look no further than Rejuvenate! Lemonade. Rejuvenate! Lemonade offers all the deliciousness of fresh lemonade with the energizing and health-boosting effects of Rejuvenate!™ (Original Greens), the first superfood formulated to provide high levels of dietary nucleic acids (RNA, DNA).

In fact, Rejuvenate Lemonade is among the best—and tastiest—ways to take Rejuvenate! Original Greens. I make 12–32 ounces of Rejuvenate! Lemonade daily. It is especially refreshing in the summer, but it easy to make and drink year-round. Not only does it taste amazingly good, but delivers the all important therapeutic levels of dietary nucleic acids you need daily for good health.

All three Rejuvenate! superfoods offer major energizing effects by providing therapeutic levels of dietary nucleic acids (RNA, DNA). Rejuvenate! superfoods are the only superfoods dedicated to supplying high levels of dietary nucleic acids. Yet, Rejuvenate!™ (Original Greens) is the most densely packed with dietary RNA, providing 340 mg per serving (one small scoop)!! A single container provides 42 servings—sufficient for six weeks of daily use.

MAKE REJUVENATE!™ LEMONADE

Make Rejuvenate! Lemonade with fresh lemons or limes, maple syrup (or other natural sweeteners), purified water, cayenne pepper (optional), and Rejuvenate!™ superfood. If you don’t have fresh lemons or limes, substitute bottled lemon juice (like the Santa Cruz brand organic 100% lemon or 100% lime juice).

REJUVENATE!™ LEMONADE RECIPE

Fresh Lemons or Limes (1–2)
Purified Water (8–32 ounces)
Grade B Maple Syrup (1–2 tbsp)
Cayenne Pepper (1/4 tsp or pinch)
Rejuvenate!™ (Original Greens) (1–4 scoops)

Squeeze the lemons (using a citrus juicer or press). Aim to squeeze 2–4 tbsp juice. Mix lemon juice into your container of water. Add 1–2 tbsp maple syrup or to taste. You can also try using stevia, xylitol, or other natural sweeteners. Add a pinch of cayenne pepper (optional). Mix 1–4 scoops of Rejuvenate! (Original Greens) superfood. In hot weather, try adding a few ice cubes. Stir and enjoy!

Rejuvenate! Lemonade is excellent when modified to include small amounts of other juices (e.g., blueberry or pomegranate) of your choice, or other Rejuvenate! superfoods (Rejuvenate! Plus or Rejuvenate! Berries & Herbs).

Rejuvenate!™ Original Greens is the most nutrient-dense, and darkest-green superfood in HPDI’s Rejuvenate! line.

MAJOR BENEFITS OF DIETARY NUCLEIC ACIDS

Dietary nucleic acids offer significant benefits, including:

• Greater Energy (via increased ATP production in cells)
• Improved Endurance
• Greater Muscle Mass and Functional Strength
• Cardiovascular Benefits
• Increased Tissue Oxygenation & Anti-Anoxic Effects (easier breathing)
• Lower cholesterol levels
• Smoother Skin & More Youthful Appearance (Anti-Aging Effect)
• Detoxification Support
• Temperature tolerance (to cold/heat)
• Quality of Life and Longevity Effects
• Greater Subjective Well-Being

(Sources: Nucleic Acid Nutrition & Therapy, and Chlorella: Gem of the Orient)

SOURCES OF DIETARY NUCLEIC ACIDS
IN REJUVENATE! SUPERFOOD (ORIGINAL GREENS)

• Chlorella
• Chlorella Growth Factor (CGF)
• Nutritional Yeast
• Yeast RNA Extract

Other nutrients included known to support the uptake, assimilation, and use of dietary nucleic acids:

• D-Ribose
• Calcium Folinate
• Methylcobalamin (Vitamin B12)

These nutrients ensure the body effectively utilizes the dietary nucleic acids in Rejuvenate! Original Greens. They also help this unique high-RNA superfood support your health beyond what might be expected of the collection of individual nutrients—a process known as “synergy” that leverages the benefits of all ingredients in Original Greens into something more than the sum of its parts.

FINAL WORDS: WHY REJUVENATE! LEMONADE?

Rejuvenate!™ Original Greens was the first in the Rejuvenate! line of superfoods. More than the others, it is nutrient-dense in terms providing the richest amount of dietary nucleic acids per unit weight. It also remains the most cost-effective per serving.

While it does not contain a built-in multivitamin (like Rejuvenate! PLUS and Rejuvenate! Berries & Herbs) or a comprehensive herbal sub-formula (like Berries & Herbs), Rejuvenate!™ Original Greens remains most popular among “hard core” nutrition customers and healthy food purists, as well as individuals seeking the most rapid detoxification and cleansing effects. Does this sounds like you or your clients? Then start with “Original Greens,” make healthy RNA-rich lemonade, and enjoy all the tasty benefits!

The combination of fresh lemonade and Rejuvenate! Original Greens will help hydrate, cleanse, purify, and detox…and simply is a tasty and energy-boosting, power-up drink like no other!

Lemonade made with Rejuvenate! Original Greens packs a potent, high-RNA punch.

RESOURCES

Rejuvenate! — The Original High-RNA Superfood

Rejuvenate! Superfoods Comparison

Rejuvenate! (Original Greens)

ARTICLES

High-RNA Rejuvenate! Superfood

“9 Things to Know About Rejuvenate!™ Superfoods”

DIETARY NUCLEIC ACIDS – DR. BENJAMIN S. FRANK, PART 1

DIETARY NUCLEIC ACIDS – DR. BENJAMIN S. FRANK, PART 2

Super-Tasty Morning Nutritional Drinks

BOOKS

Chlorella: Jewel of Far East, Bernard Jensen, PhD.

Chlorella: Gem of the Orient: The Dynamic Food Discovery for Health and Healing, Bernard Jensen, PhD

Dr. Frank’s No-Aging Diet, Dr. Benjamin Frank.

Nucleic Acid Nutrition & Therapy, Benjamin S. Frank, MD

Nucleic Acid Therapy in Aging and Degenerative Disease: A Metabolic Approach with DNA, RNA, and Related Metabolites, Benjamin S. Frank (3rd ed)

A New Approach to Degenerative Disease and Aging: Effects of RNA, DNA with Other Metabolites. Dr. Benjamin S. Frank

Dr. Frank’s No-Aging Diet Cookbook, Barbara Friedlander Meyer, Marilyn Peterson, and Benjamin S. Frank, MD

Food Healing for Man (vol. 1), Bernard Jensen, PhD

HOMOCYSTEINE GENETICS – COENZYME B VITAMINS

Dr. Hank Liers, PhD homocysteine coenzyme B vitaminsWe previously published an article titled FOLATE INGREDIENTS – FOLINIC ACID & 5-MTHF in which we discuss how coenzyme folate vitamins are far superior to the synthetic folic acid form. In today’s article, I take a more in-depth look at how homocysteine is formed from methionine, how genetics affects the metabolic pathways, and how B vitamins are used in metabolic pathways.

One way to look at the metabolic pathways of methionine (an essential amino acid) is that it provides a way for the body to convert this sulfur containing amino acid either to cysteine and its key by-products glutathione, taurine, and sulfates or allows remethylation back to methionine to occur using either the Folate Cycle or the Trimethyl glycine (betaine) pathways.

Figure 1 shows these metabolic pathways including the vitamins required at each step including vitamin B6 (as P-5-P), methylcobalamin, and 5-methyltetrahydrofolate (5-MTHF). In addition, it shows the key enzymes produced by the body at each step. These enzymes include CBS (cystathione beta synthase), BHMT (betaine homocysteine methyltransferase), MS (methionine synthase), and MTHFR (methylene tetrahydrofolate reductase).

homocysteine metabolism diagram

Figure 1. Metabolic Pathways in Methionine and Homocysteine Metabolism

HEALTH ISSUES ASSOCIATED WITH HIGH HOMOCYSTEINE LEVELS

It is highly important that the various metabolic pathways function correctly to keep homocysteine at healthy levels (6–8 µmol/L). Unfortunately, high levels of homocysteine in the body (10–20 µmol/L) are a factor in a wide range of health issues, including:

  • Greater risk for heart problems, including coronary artery disease, heart attacks, stroke, high blood pressure, congestive heart failure, and abnormal cholesterol levels. This is due to increased inflammation, sometimes due to blood clotting spontaneously, and because of blockages of the major arteries.
  • Mental abnormalities such as depression, anxiety, bipolar disorder, and other mental problems are more common among people with high homocysteine
  • Migraines and headaches in a significant percentage of the population
  • In those who suffer from high homocysteine due to having nutritional deficiencies anemia, aches and pains, hearing loss, age-related macular degeneration (ARMD), slowed development, and birth defects might also be possible
  • Greater risk for dementia, Alzheimer’s disease, brain atrophy, and other cognitive problems
  • In children, skeletal and developmental abnormalities including having a curved spine or protruding chest and rib cage. Some patients appear very tall and thin, and some might also have very long, thin “spider-like” toes and fingers.
  • Behavioral problems, including ADHD, autism and other learning disabilities

ROLE OF GENETICS IN HOMOCYSTEINE METABOLISM

Ten or more years ago, questions of how genetics enters into homocysteine metabolism were unlikely to be asked. However, in recent years DNA testing has advanced and is now available to everyone (for example, see my article about Bodysync’s genetic test, DISCOVERING NUTRITIONAL NEEDS THROUGH ADVANCED GENETIC TESTING.

You may have heard a great deal about MTHFR (methylene tetrahydrofolate reductase). This gene is involved in folate metabolism and has a central role in methylation processes like repair of and building new DNA in dividing cells.

In the remethylation pathway for conversion of homocysteine to methionine, MTHFR plays a key role in converting folate into 5-MTHF which is needed along with B12 as methylcobalamin in order for the conversion to take place. Genetic variations in MTHFR have been studied in depth. Of the many variations studies the most significant ones appear to be variations of C677C such as C677T (referred to as heterozygous) or T677T (referred to as homozygous). The heterozygous variant appears in about 30–50% of the population and causes somewhat less efficiency in the conversion of folic acid to 5-MTHF. However, the homozygous variation occurs in about 10% of the population and can have serious effects due to converting little homocysteine back to methionine.

Another variation in MTHFR is called A1298A. These variations are A1298C and C1298C and will have similar effects to the C677C variations. It was interesting to me when I recently analyzed my Bodysync genetic test results showing I carry the variation A1298C (heterozygous), which indicates I may not be effectively converting homocysteine back to methionine.

Additionally, my Bodysync genetic test results also indicate that I have heterozygous variations in the CBS enzyme shown in Figure 1, as well as heterozygous variations in MTR and MTRR enzymes, which are involved with B12 levels in the remethylation pathway. These results indicate that I need to take higher levels of methylcobalamin and 5-MTHF.

IMPORTANCE OF COENZYME FORMS AND PROPER AMOUNTS OF B VITAMINS

Many of the B vitamins on the market today unfortunately are in synthetic form. The body can only use the natural coenzyme forms effectively. For example, the body needs vitamin B6 in the form of P-5-P (pyridoxal-5-phosphate), folate in the form of L-5-MTHF, and B12 in the form of methylcobalamin for proper metabolism of methionine. In some cases the body can use the synthetic forms of pyridoxine HCl, folic acid, and cyanocobalamin but pays a cost (e.g., in time and energy) by having to convert synthetic forms to coenzyme forms.

Add to the prevalence of synthetic B vitamins, the fact that genetic deficiencies are more common than previously assumed, and it becomes clear that the coenzyme forms of B vitamins in the proper amounts are extremely important.

Fortunately, I have always believed it best to include as many coenzyme forms as possible in the nutritional supplements I formulate (over the past 27 years). For example, all HPDI multivitamins include coenzymes of B1, B2, B6, B12, and folate (as 5-MTHF and folinic acid). This is uncommon in most multivitamin formulas on the market. For this reason our supplements are ideally suited to the prevention or resolution of most genetic problems regarding homocysteine.

In addition, I have always chosen to include higher amounts than most multivitamins on the market. We also make available 5-MTHF one milligram (1 mg) capsules and methylcobalamin five milligram (5 mg) sublingual tablets. When genetic variations are in play as discussed above, then providing relatively higher amounts of coenzyme B vitamins that support important requirements in the body seems necessary.

Interestingly, several other nutrients are involved in the pathways involving methionine and homocysteine. These include zinc, magnesium, and Vitamin B2. Our multivitamin formulas and magnesium formulas, especially Myo-Mag with its coenzyme B1, B2, and B6, are recommended to support these nutrient needs. Finally, it has been found that N-Acetyl-L-Cysteine (NAC) can significantly lower homocysteine (by up to 50%), most likely because its gives the body an excellent source of cysteine without have to use methionine.

SUMMARY

In this article, I have shown the value of the use of genetic testing and high-quality coenzyme B vitamins in resolving health issues associated with high values of homocysteine in the body.

 

SOURCES & RESOURCES

DISCOVERING NUTRITIONAL NEEDS THROUGH ADVANCED GENETIC TESTING.

FOLATE INGREDIENTS – FOLINIC ACID & 5-MTHF

The Homocysteine Revolution by Kilmer S. McCully, MD

Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease
(Cell Death and Differentiation 11, S56–S64)

PRODUCTS

5-MTHF
(coenzyme folate)

Methylcobalamin
(vitamin B12)

B-Complex-50

HPDI Multivitamins

0

KIDS VITAMINS – NO KIDDING!

Fred Liers PhD kids mighty multi multivitamin chewableLooking for a high-quality, natural KIDS MULTIVITAMIN? Me, too. Do you look in vitamin stores, natural foods stores, and online marketplaces—in vain? I have.

A couple years ago, HPDI’s formulator, my father Hank Liers, PhD decided to reformulate our already excellent kids multivitamin—the Kids Mighty-Multi!—to make it better. His intentions were good: the world’s best designer of adult multivitamins would improve the best children’s vitamin.

My quandary? While Dr. Hank was busy at work reformulating our kids multi, the existing—and uber-excellent—original Kids Mighty-Multi! went out-of-stock, and never came back. Suddenly, my seven-year-old son’s “go-to” multivitamin was gone…indefinitely!

I took action—kids vitamins became my obsession—because I wanted the best multivitamin for my child. I searched everywhere for high-quality kids vitamins. Leaving no stone unturned, we tried them all—including organic, whole food, gluten-free, vegan-friendly brands with glossy labels. Did we find good ones? Not really.

What DID we find? Well, not much—and a lot. That is, not much in the way of high potency, high-purity, or advanced forms, like coenzyme vitamins. And a lot of false promises and junk ingredients. Like sugar and corn syrup and GMO ingredients—even from “reputable” brands.

Not to mention artificial sweeteners, colorings, flavorings, as well as toxic preservatives and fillers, which are the de facto standard in conventional products. Natural products are better—not always by as much as you’d expect.

chewable kids mighty-Multi! multivitamin

Looking for a good children’s multivitamin? Look no further than chewable Kids Mighty-Multi!

MY MULTIVITAMIN WISHLIST

Now in label-induced miasmic SHOCK…I proposed a reversal of terms. I simply wanted a lot of good things—like complete, balanced nutrients—and not much in the way of toxic additives.

Reeling, I scrawled a brief manifesto or “wishlist” for my ideal kids multivitamin:

“Great taste, high-purity, balanced nutrients at optimal levels, chewable; sugar free, non-GMO. No artificial ingredients, especially toxic sweeteners like aspartame or sucralose. No harmful additives or preservatives like sodium benzoate, BHT, or propylene glycol (no antifreeze please!); a few good-for-you functional ingredients.”

Was I asking *too* much? No way. Yet, I was giving up on finding a suitable kids multivitamin. My son instead began taking an HPDI adult multivitamin (Multi Two Caps) we scaled to his sixty five-pound weight. The taste wasn’t great—so we opened capsules directly into his juices and smoothies—because he’s not ready to swallow capsules or tablets whole. At best…a partial solution.

KIDS MIGHTY-MULTI! BACK — BETTER THAN EVER!

Then. It. Happened. Lighting struck—HPDI’s Kids Mighty-Multi! is BACK! Turns out my dad finished reformulating the world’s best kids multivitamin. He broke the news with a smile. Stunned and unbelieving…I took a breath. My heart skipped a beat. Then I grabbed a bottle!

Who knew it would take two years?—and now, who cares!? This month, HPDI proudly introduces a *new* Kids Mighty Multi!. Worth the wait? Yes. Because the new version is better than ever.

I’ve thrown away my wishlist. My search is over. Yours may be, too. Because no kids multivitamin comes *close* to Kids Mighty-Multi!. See the comparison chart and nutrient table (below).

A SERIOUS VITAMIN FOR KIDS – FINALLY!

What makes the new Kids Mighty-Multi! so good, and so much better? Let me count the ways. Here is a summary of benefits before I dive into discussing them in greater detail.

• Kids and adults love the taste!

• Full-spectrum of balanced, essential nutrients needed for creating, supporting, and maintaining excellent health for your child. Includes natural coenzyme form vitamins and Krebs’ cycle bionutrients that work with young bodies to provide energy for metabolic processes, healing, and optimal health.

• Bioavailable vitamin and mineral carriers the body recognizes and can assimilate rapidly. Plus, multiple carriers of individual nutrients ensure assimilation. Chewable form speeds uptake in the body.

Variety of well-known herbal ingredients, including quercetin, grape extract, turmeric, broccoli powder, and octacosanol

Complete, balanced supply of carotenoids, including beta-carotene, lycopene, and lutein

Functional ingredients built into every aspect of the formula, including the taste-enhancing package, herbal ingredients, and cofactors. Functional ingredients serve multiple purposes in supporting health.

• Flavored using only healthy, natural sweeteners and taste enhancers, including mannitol, fructooligosaccharides (FOS) (from chicory root), organic beet root powder, natural fruit flavor, xylitol, and stevia leaf extract. Taste enhancers exhibiting additional positive benefits (i.e., prebiotic effects, cavity prevention, and antioxidant action).

• NO refined sugars, no corn syrup, and…NO GMOs!

• NO artificial colorings or flavorings, artificial sweeteners (like aspartame, saccharin, or sucralose), or hydrogenated vegetable oils

• Excludes common food source allergens like wheat, corn, soy, and dairy

• Excludes unnecessary excipients, including fillers, binders, and additives

• Foundational formula ideal for providing basic nutrients for health. A high-quality multivitamin is the first step toward a complete nutritional supplement regimen. Formulated to work well with other HPDI foundational formulas, such as vitamin C / antioxidant formulas (like PRO-C™) and essential fatty acids (like Essential Fats plus E).

Kids Multivitamin comparison chart

TASTE-ENHANCING COMPLEX: FUNCTIONAL INGREDIENTS

Kids Mighty-Multi! tastes GREAT! Kids and adults LOVE the taste. From the perspective of your child’s taste buds, that’s *all* that matters.

But I want to talk a bit about the importance of healthy sweeteners…and how the best sweeteners perform double duty as health promoters.

WHY does Kids Mighty-Multi! taste so good? (Did I mention it contains NO refined sugars—or any artificial sweeteners or flavorings?)

Because Dr. Liers created a natural taste-enhancing complex. This taste-enhancing package includes xylitol, mannitol, FOS (fructooligosaccharides), beet root juice powder, natural fruit flavors, and stevia leaf extract.

Dr. Hank selected healthy, functional ingredients—as much as possible—in order to enhance the taste. That means these taste enhancers are not only NOT unhealthy like the refined sugars, corn syrups, and artificial sweeteners I found in so many other kids vitamins. But they are GOOD for you!

Functional sweeteners and taste-enhancing ingredients in Kids Mighty-Multi! include:

Xylitol – Proven sweetener that is a polyol (sugar alcohol) known to fight cavities, improve bone health, and more! (see: http://xylitol.org/about-xylitol/)

Mannitol – Natural polyol sweetener with added benefits as an antioxidant. Mannitol surprisingly has a very powerful effect on the hydroxyl free-radical. (see: https://www.ncbi.nlm.nih.gov/pubmed/9090754). Mannitol serves double duty as a healthy sweetener and important hydroxyl radical free-radical trapper.

• Fructooligosaccharides (FOS) (from chicory root) – Naturally sweet with no or low glycemic index. It is also a prebiotic that supports the growth of beneficial bacteria.

• Beet Root Powder (organic) – Naturally sweetens and colors Kids Mighty-Multi!. Beet is a functional ingredient providing methyl donors and easily assimilable iron. Moreover, Dr. Benjamin S. Frank found beets contain an amino acid the body uses to create its own dietary nucleic acids and a nutrient important to brain function (No-Aging Diet, 81).

• Berry & Fruit Extracts / Flavors – Mixed berry, strawberry, raspberry, and pomegranate. These berry extracts provide extremely good, fruity taste—bursting with berry flavors!

• Stevia Extract – Natural sweetens with little or no glycemic value. Kids Mighty-Multi! contains a newer, improved stevia extract which is de-bittered

• Malic Acid – Provides a naturally tart taste, supports the utilization of magnesium, and feeds into the Krebs’ cycle that makes cellular energy (ATP)

Why is choosing “good-for-you” functional sweeteners and taste enhancers important?

Because despite what adults might wish, sweeteners still comprise the largest percentage of kids multivitamins by weight. That means your child will be ingesting significant amounts (of whatever these sweeteners are) relative to the size of their multivitamin.

Who wants the bulk of their child’s multivitamin intake comprised of sugars, corn syrup, sucralose, or worse (think aspartame)? This is the reason natural sweeteners providing functional benefits make all the difference for health.

COMPLETENESS MATTERS – A LOT!

Kids Mighty-Multi! is nothing if not complete. As formulated by Dr. Hank Liers, it provides therapeutic levels of all essential vitamins, minerals, cofactors, and much more.

If you read labels (like I do), you’ll see most kids vitamins are “hit-or-miss.” They provide certain nutrients, but often completely miss others—usually with no rhyme or reason. (What was its formulator thinking?)

Missing important nutrients is bad for consumers—like you and your child—because all nutrients require other nutrients to “do a body good.” It’s called synergy, and it’s the way our cells are designed to work.

That means if you obtain sufficient amounts of a specific nutrient, but not enough of another, you may be unable to effectively utilize the nutrient you have—because utilization requires the nutrient you *don’t* have. Catch-22, huh? I’ll talk more about this later.

Do your child—and yourself—a favor: choose a complete multivitamin like Kids Mighty-Multi!.

kids mighty multi multivitamin

Kids Mighty-Multi! is nothing if not COMPLETE. (Tablets in photo appear larger than actual size.)

ADVANCED FORMS OF NUTRIENTS…LIKE YOU’VE NEVER SEEN

Then, there are advanced forms of nutrients, like coenzyme B vitamins. Most kids vitamins (and adult multivitamins) offer you the B complex vitamins as synthetic forms. How can you tell? Well, coenzyme vitamin B1 in Kids Mighty-Multi! is from Thiamin Diphosphate and is very different from synthetic “thiamine HCl.” Vitamin B2 is from Riboflavin-5′-Phosphate is not synthetic “riboflavin.” The vitamin B6 is from Pyridoxal-5′-Phosphate is not “pyridoxine HCl.” And so on.

What about vitamin B12 as toxic “cyanocobalamin”? Never. Kids Mighty-Multi! provides coenzyme B12 as methylcobalamin. Other brands sometimes use this form, but then provide synthetic forms for other B vitamins. That makes sense—NOT.

Sure, coenzyme B vitamins cost more to source. But the truth is, your body requires far less coenzyme form vitamins because they are the natural forms found in foods—you easily assimilate and utilize them. Kids Mighty-Multi! doesn’t need large amounts of coenzyme vitamins to give you big benefits.

Meanwhile, synthetic forms are not as easily assimilated—most go through a complex enzymatic breakdown before the body can use them. In some cases (for example if your child lacks certain enzymes due to genetics), syntethic forms cannot be broken down—or used—at all!

Case in point: Folate. Most kids vitamins give you “folic acid,” which is synthetic vitamin B1. A large percentage of the population (including me) lacks the gene providing the enzyme required to process folic acid. If folic acid builds up in cells (because it can’t be broken down), then it can be toxic. Solution: we use coenzyme folate—or 5-MTHF (5-methyl tetrahydrofolate) in Kids Mighty-Multi!. Problem solved.

Recall I said Kids Mighty-Multi! is complete?—and the importance of completeness in a multivitamin? Well, for example, if your kids’ multivitamin only provides synthetic vitamin B6 (as Pyridoxine HCl), it won’t be convertable into its biologically active (coenzyme) form without coenzyme vitamin B1 (Riboflavin-5′-Phosphate).

Did you catch that? To convert Pyridoxine HCl (synthetic vitamin B6) to its usable coenzyme form Pyridoxal-5′-Phosphate, you need coenzyme Riboflavin (Riboflavin-5′-Phosphate). You need a coenzyme form of one B vitamin in order to convert another B vitamin to its coenzyme form!

If you have only synthetic forms of these B vitamins, your body must go through multiple conversion processes in order to first convert synthetic Riboflavin into coenzyme Riboflavin so that you can convert synthetic vitamin B6 (Pyridoxine HCl) into its coenzyme B6 form (Pyridoxal-5′-Phosphate).

Yes, you can *survive* on synthetic forms of B vitamins. But why make your body work so hard? Why survive when you can *thrive* (with coenzyme vitamins)?

Why other kids vitamins don’t include coenzyme forms is BEYOND ME. If other brands go with conventional (and sometimes toxic) synthetic forms, so be it. Run, and go with Kids Mighty-Multi!.

Other advanced forms include vitamin D as D3 (cholecalciferol), vitamin K as K1 and K2 (Menaquinone-7), and minerals using Krebs’ cycle carriers (like citrates, malates, fumarates, succinates, and aspartates) that are best recognized and utilized in the body because they plug into the body’s energy (ATP) production system.

KIDS MIGHTY-MULTI!™ NUTRIENT TABLE

NUTRIENT

AMOUNT

% Daily Value

Vitamin A
(as beta-carotene from Dunaliella salinas)
470 IU 10
Vitamin C
(from potassium, magnesium, and calcium ascorbates)
16 mg 27
Vitamin D3 (as cholecalciferol) 50 IU 13
Vitamin E (from d-alpha tocopheryl succinate and 5 mg natural mixed tocopherols) 13 IU 42
Vitamin K (10 mcg as phylloquinone (K1) and 5 mcg as MK-7 (K2)) 15 mcg 18
Vitamin B1 (from thiamin diphosphate) 1.6 mg 107
Vitamin B2 (from riboflavin-5′-phosphate) 1.6 mg 94
Vitamin B3 (80% from niacinamide and 20% from niacin) 12 mg 60
Pantothenic Acid (from calcium pantothenate) 5 mg 50
Vitamin B6 (from pyridoxal-5′-phosphate) 2.5 mg 125
Vitamin B12 (as methylcobalamin) 15 mcg 250
Folate (from 5-MTHF – Quatrefolic®†) 50 mcg 13
Biotin (pure crystalline) 30 mcg 10
Magnesium (from malate) 6 mg 1.5
Calcium (from Krebs cycle bionutrients) 6 mg 0.6
Potassium (from citrate) 4.7 mg <1
Zinc (from citrate) 1.25 mg 8.3
Iron (from fumarate) 0.3 mg 1.7
Manganese (from citrate) 0.3 mg 15
Copper (from aspartate) 0.125 mg 6.3
Chromium (from polynicotinate) 13 mcg 11
Molybdenum (from citrate) 6 mcg 8
Selenium (from l-selenomethionine) 5 mcg 7
Choline (from bitartrate) 6 mg *
Inositol (pure crystalline) 15 mg *
N-Acetyl-L-Cysteine (NAC) 5 mg *
L-Taurine 5 mg *
Betaine HCl 3 mg *
Quercetin (as dihydrate) 3 mg *
Turmeric (from Curcuma longa) (root) 3 mg *
Broccoli Sprouts Powder 2 mg *
Grape Extract (Vitis vinifera) (from seed, skin, and stem) 1 mg *
Lycopene (tomato extract) (fruit) 200 mcg *
Boron (from glycinate and aspartate) 125 mcg *
Lutein (from Calendula officinalis) (flower) 70 mcg *
Octacosanol (from policosanol) 15 mcg *
Vanadium (from BGOV – bis glycinato oxo vanadium) 6 mcg *

* No established Daily Value
† Quatrefolic® is a registered trademark of Gnosis SPD

SCALABLE DOSING – CALLING ALL KIDS – AND ADULTS!

Maybe the best feature of Kids Mighty-Multi! is scalable dosing. Scalability makes it suitable for children and youth of all sizes—and adults, too!

Glancing at Kids Mighty-Multi!‘s label, you might assume it’s as low potency as the most kids’ vitamins available in stores. Not so fast.

Because Dr. Hank designed this multivitamin for everyone, including adults. How do I know? Because he told me: he takes these chewables himself!

How does it work? You simply take two (2) tablets per 20 pounds of body weight—up to six tablets—for kids. But since most older kids and adults weigh more than 60 pounds, you can take 8–10+ tablets and approximate the nutrition you would get from your regular adult vitamin. How cool is that!

Scalable dosing works well for people who don’t like swallowing capsules or tablets, or who prefer a good-tasting chewable. And who doesn’t, sometimes? It is especially useful for traveling because the entire family can use it.

In my case, I usually take four capsules per day of Hank & Brian’s Mighty Multi-Vite! , which my favorite adult multivitamin, and the inspiration for creating the Kids Mighty-Multi!. Yet, there are many days when I thrill to the taste of the new chewable kids multivitamin—knowing I get a significant amount of nutritional value. That means a lot. A lot of goodness. And not much to worry about.

Chewable Kids Mighty-Multi! multivitamin

Dr. Hank Liers pulled out the stops in formulating Kids Mighty-Multi!

CHOOSE KIDS MIGHTY-MULTI!

You’ve got choices. You can go online or to your local natural market, pharmacy, or big box store and fill up on whatever kids vitamins you find. Take your chances. Or you can try Kids Mighty-Multi! to discover how good a children’s multivitamin can (and should) be—a truly superior formula.

Choose our awesome kids multivitamin. Dr. Hank did his job. We’re 110% confident it meets—or exceeds—the needs and expectations of your child, and likely you, too. And definitely those of your clients, if you’re a health professional.

Of course, you’ve got a brain. But this choice is a “no-brainer.” Go for Kids Mighty Multi!. Your kids will never go back to their old multivitamin. And they’ll be healthier for it.

 

SOURCES & RESOURCES

Products

Kids Mighty-Multi! Multivitamin

HPDI Multivitamins

References

Coenzyme Vitamins (HPDI)

Fructooligosaccharides Abstracts (HPDI)

Statement on Additives (Excipients) (HPDI)

The HPDI Difference: Four Pillars of Excellence

Percent Daily Values (DV) Calculation Table (FDA)

Xylitol.org

Dr. Frank’s No-Aging Diet
by Benjamin S. Frank, MD, PhD

Studies

Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro.” Res Commun Mol Pathol Pharmacol. 95(2):179-89.
(Study includes mannitol benefits)