0

ULTIMATE PROTECTOR+ INGREDIENTS – GOJI BERRY

Dr. Hank Liers, PhD biography about us HPDI integratedhealth formulator founder CEO scientist physicist wild bilberry and wild blueberry Ultimate Protector+ includes goji berry extract (also known as wild fresh goji berry fruit powder extract and wolfberry extract), as well as extracts from 12 different fruits, vegetables, and herbs. Each of these ingredients contain substances that may be considered to be polyphenols, antioxidants, and Nrf2 activators. In this article, I will explore the ingredient goji berry (Lycium barbarum) extract which is a component of SFB® – Standardized Fruit Blend from Ethical Naturals, Inc.

Ultimate Protector+ Includes Goji Berry

Ultimate Protector+ Includes Goji Berry

SFB® is a proprietary formula that combines extracts from Grape, Cranberry, Pomegranate, Blueberry, Apple, Mangosteen, Bilberry, Chokeberry, and Goji Berry. It is high in fruit polyphenols, flavonoids, anthocyanins, catechins, proanthocyanins, ellagic acid, xanthines, chlorogenic acid, pterostilbenes, resveratrol, phloridzin, quercetin, zeaxanthin, carotinoids, polysaccharides, quinic acid, and more. With its diverse blend, SFB® offers over 40-50% polyphenols as well as >9,000 ORAC units in a single gram.

Polyphenols, anthocyanins, and other plant elements are powerful ingredients associated with a variety of areas of human health, including healthy aging, healthy glucose metabolism, cardiovascular health, and inflammation management.

HEALTH BENEFITS OF GOJI BERRY

The Goji Berry extract in Ultimate Protector+ is non-GMO and has been extracted with  water. Testing has indicated the product contains over 1.5% polyphenols. In numerous epidemiological studies, goji berries have been associated with a decreased risk of chronic diseases such as cardiovascular disease, cancer, and asthma.

CHEMICAL COMPOSITION OF GOJI BERRIES

Goji Berries contain abundant polysaccharides (LBPs, comprising 5%–8% of the dried fruits), scopoletin (6-methoxy-7-hydroxycoumarin, also named chrysatropic acid, ecopoletin, gelseminic acid, and scopoletol), the glucosylated precursor, and stable vitamin C analog 2-O-β-D-glucopyranosyl-L-ascorbic acid, carotenoids (zeaxanthin and β-carotene), betaine, cerebroside, β-sitosterol, flavonoids, amino acids, minerals, and vitamins (in particular, riboflavin, thiamin, and ascorbic acid).

The predominant carotenoid is zeaxanthin, which exists mainly as dipalmitate (also called physalien or physalin). The content of vitamin C (up to 42 mg/100 g) in goji berry (also known as wolfberry) is comparable to that of fresh lemon fruits. As to the seeds, they contain zeaxanthin (83%), β-cryptoxanthin (7%), β-carotene (0.9%), and mutatoxanthin (1.4%), as well as some minor carotenoids.

In fact, increasing lines of experimental studies have revealed that L. barbarum berries have a wide array of pharmacological activities, which is thought to be mainly due to its high LBPs content. Water-soluble LBPs are obtained using an extraction process that removes the lipid soluble components such as zeaxanthin and other carotenoids with alcohol. LBPs are estimated to comprise 5%–8% of LBFs and have a molecular weight ranging from 24 kDa to 241 kDa. LBPs consist of a complex mixture of highly branched and only partly characterized polysaccharides and proteoglycans.

The glycosidic part accounts, in most cases, for about 90%–95% of the mass and consists of arabinose, glucose, galactose, mannose, rhamnose, xylose, and galacturonic acid. LBPs are considered the most important functional constituents in LBFs. Different fractions of LBPs have different activities and the galacturonic acid content is an imperative factor for activities of LBP. The bioactivities of polysaccharides are often in reverse proportion with their molecular weights. Increasing lines of evidence from both preclinical and clinical studies support the medicinal, therapeutic, and health-promoting effects of LBPs.

Scientific Studies on the Antioxidant Effects of GOJI BERRIES

Databases of scientific studies (like the National Institutes of Health (NIH) PubMed database) contain numerous of up-to-date studies and abstracts about goji berries.

Below we provide a few relevant scientific studies on the health benefits of goji berries.

Goji Berries as a Potential Natural Antioxidant Medicine: An Insight into Their Molecular Mechanisms of Action.

Oxid Med Cell Longev. 2019 Jan 9;2019:2437397. doi: 10.1155/2019/2437397. eCollection 2019.
Authors: Ma ZF, Zhang H, Teh SS, Wang CW, Zhang Y, Hayford F, Wang L, Ma T, Dong Z, Zhang Y, Zhu Y1
From: https://www.ncbi.nlm.nih.gov/pubmed/30728882

Abstract

Goji berries (Lycium fruits) are usually found in Asia, particularly in northwest regions of China. Traditionally, dried goji berries are cooked before they are consumed. They are commonly used in Chinese soups and as herbal tea. Moreover, goji berries are used for the production of tincture, wine, and juice. Goji berries are high antioxidant potential fruits which alleviate oxidative stress to confer many health protective benefits such as preventing free radicals from damaging DNA, lipids, and proteins. Therefore, the aim of the review was to focus on the bioactive compounds and pharmacological properties of goji berries including their molecular mechanisms of action. The health benefits of goji berries include enhancing hemopoiesis, antiradiation, antiaging, anticancer, improvement of immunity, and antioxidation. There is a better protection through synergistic and additive effects in fruits and herbal products from a complex mixture of phytochemicals when compared to one single phytochemical.

An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides

Drug Des Devel Ther. 2015; 9: 33–78.
Authors: Jiang Cheng, Zhi-Wei Zhou, Hui-Ping Sheng, Lan-Jie He, Xue-Wen Fan, Zhi-Xu He, Tao Sun, Xueji Zhang, Ruan Jin Zhao, Ling Gu, Chuanhai Cao,  and Shu-Feng Zhou
From: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277126/

Abstract

Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs) are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs. Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions. LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of cancer cells and inhibit tumor growth in nude mice through induction of apoptosis and cell cycle arrest. LBPs may potentiate the efficacy of lymphokine activated killer/interleukin-2 combination therapy in cancer patients. LBPs exhibit significant hypoglycemic effects and insulin-sensitizing activity by increasing glucose metabolism and insulin secretion and promoting pancreatic β-cell proliferation. They protect retinal ganglion cells in experimental models of glaucoma. LBPs protect the liver from injuries due to exposure to toxic chemicals or other insults. They also show potent immunoenhancing activities in vitro and in vivo. Furthermore, LBPs protect against neuronal injury and loss induced by β-amyloid peptide, glutamate excitotoxicity, ischemic/reperfusion, and other neurotoxic insults. LBPs ameliorate the symptoms of mice with Alzheimer’s disease and enhance neurogenesis in the hippocampus and subventricular zone, improving learning and memory abilities. They reduce irradiation- or chemotherapy-induced organ toxicities. LBPs are beneficial to male reproduction by increasing the quality, quantity, and motility of sperm, improving sexual performance, and protecting the testis against toxic insults. Moreover, LBPs exhibit hypolipidemic, cardioprotective, antiviral, and antiinflammatory activities. There is increasing evidence from preclinical and clinical studies supporting the therapeutic and health-promoting effects of LBPs, but further mechanistic and clinical studies are warranted to establish the dose–response relationships and safety profiles of LBPs.

Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L.

2013 Mar;54:16-23. doi: 10.1016/j.ijbiomac.2012.11.023. Epub 2012 Nov 28.
Jin M1, Huang Q, Zhao K, Shang P.
From: https://www.ncbi.nlm.nih.gov/pubmed/23200976

Abstract

Recently, isolation and investigation of novel ingredients with biological activities and health benefit effects from natural resources have attracted a great deal of attention. The fruit of Lycium barbarum L., a well-known Chinese herbal medicine as well as valuable nourishing tonic, has been used historically as antipyretic, anti-inflammation and anti-senile agent for thousands of years. Modern pharmacological experiments have proved that polysaccharide is one of the major ingredients responsible for those biological activities in L. barbarum. It has been demonstrated that L. barbarum polysaccharides had various important biological activities, such as antioxidant, immunomodulation, antitumor, neuroprotection, radioprotection, anti-diabetes, hepatoprotection, anti-osteoporosis and antifatigue. The purpose of the present review is to summarize previous and current references regarding biological activities as well as potential health benefits of L. barbarum polysaccharides.

Goji (Lycium barbarum and L. chinense): Phytochemistry, Pharmacology and Safety in the Perspective of Traditional Uses and Recent Popularity

Planta Med 2010; 76(1): 7-19
Author: Olivier Potterat
From: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0029-1186218#AT0541-1

Abstract

Since the beginning of this century, Goji berries and juice are being sold as health food products in western countries and praised in advertisements and in the media for well-being and as an anti-aging remedy. The popularity of Goji products has rapidly grown over the last years thanks to efficient marketing strategies. Goji is a relatively new name given to Lycium barbarum and L. chinense, two close species with a long tradition of use as medicinal and food plants in East Asia, in particular in China. While only L. barbarum is officinal, the fruit (fructus Lycii) and the root bark (cortex Lycii radicis) of both species are used in the folk medicine. We review here the constituents, pharmacology, safety, and uses of L. barbarum and L. chinensewith consideration to the different parts of the plant. Investigations of the fruit have focused on proteoglycans, known as “Lycium barbarum polysaccharides”, which showed antioxidative properties and some interesting pharmacological activities in the context of age related diseases such as atherosclerosis and diabetes. As to the root bark, several compounds have demonstrated a hepatoprotective action as well as inhibitory effects on the rennin/angiotensin system which may support the traditional use for the treatment of hypertension. While there are no signs of toxicity of this plant, two cases of possible interaction with warfarin point to a potential risk of drug interaction. In view of the available pharmacological data and the long tradition of use in the traditional Chinese medicine, L. barbarum and L. chinense certainly deserve further investigation. However, clinical evidences and rigorous procedures for quality control are indispensable before any recommendation of use can be made for Goji products.

GOJI BERRIES SUMMARY

Goji Berries are an important fruit full of polyphenols, antioxidants, polysaccharides (LBPs), carotenoids, and Nrf2 activators that help to make Ultimate Protector+ such an outstanding nutritional supplement.