ULTIMATE PROTECTOR+ INGREDIENTS – MANGOSTEEN

Print Friendly, PDF & Email

Dr. Hank Liers, PhD biography about us HPDI integratedhealth formulator founder CEO scientist physicist wild bilberry and wild blueberry Ultimate Protector+ includes mangosteen extract, as well as extracts from 12 different fruits, vegetables, and herbs. Each of these ingredients contain substances that may be considered to be polyphenols, antioxidants, and Nrf2 activators. In this article, I explore the ingredient mangosteen (Garcinia mangostana) extract which is a component of SFB® – Standardized Fruit Blend from Ethical Naturals, Inc.

Ultimate Protector+ Includes Mangosteen
Ultimate Protector+ Includes Mangosteen

SFB® is a proprietary formula that combines extracts from Grape, Cranberry, Pomegranate, Blueberry, Apple, Mangosteen, Bilberry, Chokeberry, and Goji Berry. It is high in fruit polyphenols, flavonoids, anthocyanins, catechins, proanthocyanins, ellagic acid, xanthines, chlorogenic acid, pterostilbenes, resveratrol, phloridzin, zeaxanthin, and quinic acid. With its diverse blend, SFB® offers over 40–50% polyphenols as well as >9,000 ORAC units in a single gram.

Polyphenols, anthocyanins and other plant elements are powerful ingredients associated with a variety of areas of human health, including healthy aging, healthy glucose metabolism, cardiovascular health, and inflammation management.

HEALTH BENEFITS OF MANGOSTEEN

The Mangosteen extract in Ultimate Protector+ has been extracted with non-GMO food grade ethanol and distilled water. Testing has indicated the product contains over 10% polyphenols.

Mangosteen extract in obtained from the skin and whole fruit for which numerous biological activities have been reported including: antimutagenic, antibacterial, hypocholesterolemic, antioxidant, and protective against tumorigenesis.

Mangosteen contains nutrients with antioxidant capacity, such as vitamin C and folate. Plus, it provides xanthones — a unique type of plant compound known to have strong antioxidant properties. In several test-tube and animal studies, the antioxidant activity of xanthones has resulted in anti-inflammatory, anticancer, anti-aging, heart protective, and antidiabetic effects.

Additionally, some research suggests that certain plant compounds in mangosteen may have antibacterial properties — which could benefit your immune health by combating potentially harmful bacteria. In a 30-day study in 59 people, those taking a mangosteen-containing supplement experienced reduced markers of inflammation and significantly greater increases in healthy immune cell numbers compared to those taking a placebo.

Metabolite Composition of Mangosteen

Xanthone is one of the compound classes that are prevalent in mangosteen. These metabolites have been extracted and characterized in various studies as reviewed by several publications. So far, there are more than 68 xanthones isolated from the mangosteen fruit with the majority of them are a- and c-mangostin. The molecular structure of these compounds have been elucidated and more recently, novel xanthones have been discovered such as 1,3,6-trihydroxy-2-(3-methylbut-2-enyl)-8-(3-formyloxy-3-methylbutyl)–xanthone, 7-O-demethyl mangostin, garmoxanthone, as well as mangostanaxanthone III, IV, and VII. These xanthones were also implicated in various pharmaceutical properties but more studies are needed to verify their effectiveness in human applications.It is interesting that using subcritical water extraction to extract xanthones from mangosteen fruit, eliminated the need for the chemical solvents.

A study showed that the aqueous micellar biphasic system they developed could also efficiently extract xanthones from mangosteen pericarp. This suggests that xanthones could be viable for human application but bioavailability studies need to be performed in the future to ascertain their delivery and efficacy. Interestingly, solubilizing a-mangostin in soybean oil (containing traces of linoleate, linolenic acid, palmitate, oleic acid, and stearate) improved the xanthone bioavailability in rats, such that the compound was found in brain, pancreas, and liver organs after 1 h treatment. This signifies the potential of using oil-based formulation for increasing the bioavailability of xanthones.

Other than xanthones, mangosteen pericarp is also known to contain one of the highest procyanidin content, compared to other fruit such as cranberry, Fuji apple, jujube, and litchi. These procyanidins including monomer (47.7%), dimer (24.1%), and trimer (26%) may also contribute to the antioxidant capability of mangosteen extract as shown in 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) assays. Other phenolics such as benzoic acid derivatives (vanilic acid and protocatechuic acid), flavonoids (rutin, quercetin, cactechin, epicatechin) and anthocyanins (cyanidin 3-sophoroside) were also highly present in mangosteen pericarp.

Furthermore, mangosteen compounds have also been profiled using metabolomics approach. Using GC-MS analysis, a study reported that mangosteen pericarp contains mainly sugars (nearly 50% of total metabolites) followed by traces of other metabolite classes such as sugar acids, alcohols, organic acids, and aromatic compounds. This study also found several phenolics such as benzoic acid, tyrosol, and protocatechuic acid which are known to possess anti-oxidative and anti-inflammatory activities.

SCIENTIFIC STUDIES ON THE ANTIOXIDANT EFFECTS OF MANGOSTEEN

Below, I provide relevant scientific studies on the antioxidant effects and potential health benefits of mangosteen.

Recent updates on metabolite composition and medicinal benefits of mangosteen plant

Wan Mohd Aizat, Ili Nadhirah Jamil, Faridda Hannim Ahmad-Hashim and Normah Mohd Noor
Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia

From: https://peerj.com/articles/6324.pdf

ABSTRACT

Background: Mangosteen (Garcinia mangostana L.) fruit has a unique sweet-sour taste and is rich in beneficial compounds such as xanthones. Mangosteen originally been used in various folk medicines to treat diarrhea, wounds, and fever. More recently, it had been used as a major component in health supplement products for weight loss and for promoting general health. This is perhaps due to its known medicinal benefits, including as anti-oxidant and anti-inflammation. Interestingly, publications related to mangosteen have surged in recent years, suggesting its popularity and usefulness in research laboratories. However, there are still no updated reviews (up to 2018) in this booming research area, particularly on its metabolite composition and medicinal benefits.

Method: In this review, we have covered recent articles within the years of 2016 to 2018 which focus on several aspects including the latest findings on the compound composition of mangosteen fruit as well as its medicinal usages.
Result: Mangosteen has been vastly used in medicinal areas including in anti-cancer, anti-microbial, and anti-diabetes treatments. Furthermore, we have also described the benefits of mangosteen extract in protecting various human organs such as liver, skin, joint, eye, neuron, bowel, and cardiovascular tissues against disorders and diseases.

Conclusion: All in all, this review describes the numerous manipulations of mangosteen extracted compounds in medicinal areas and highlights the current trend of its research. This will be important for future directed research and may allow researchers to tackle the next big challenge in mangosteen study: drug development and human applications.

α-Mangostin induces apoptosis in human chondrosarcoma cells through downregulation of ERK/JNK and Akt signaling pathway.

2011 May 25;59(10):5746-54. doi: 10.1021/jf200620n. Epub 2011 Apr 11.
Krajarng A1, Nakamura Y, Suksamrarn S, Watanapokasin R.
From: https://www.ncbi.nlm.nih.gov/pubmed/21446759

Abstract

Chondrosarcoma is a malignant primary bone tumor that is resistant to chemotherapy and radiation therapy. α-Mangostin, a component of Garcinia mangostana Linn, is a xanthone derivative shown to have antioxidant and antitumor properties. This study is the first to investigate anticancer effects of α-mangostin in the human chondrosarcoma cell line SW1353. We showed that α-mangostin inhibited cell proliferation of SW1353 cells in a time- and dose-dependent manner by using the trypan blue exclusion method. Hoechst 33342 nuclear staining and nucleosomal DNA-gel electrophoresis revealed that α-mangostin could induce nuclear condensation and fragmentation, typically seen in apoptosis. Flow cytometry using Annexin V/PI double staining assessed apoptosis, necrosis and viability. α-Mangostin activated caspase-3, -8, -9 expression, decreased Bcl-2 and increased Bax. This promotes mitochondrial dysfunction, leading to the release of cytochrome c from the mitochondria to the cytoplasm. In addition, total and phosphorylated ERK and JNK were downregulated in α-mangostin-treated SW1353 cells but no changes in p38. α-Mangostin also decreased phosphorylated Akt without altering total Akt. These results suggest that α-mangostin inhinbited cell proliferation and induced apoptosis through downregulation of ERK, JNK and Akt signaling pathway in human chondrosarcoma SW1353 cells.

Characterized mechanism of alpha-mangostin-induced cell death: caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells.

2007 Aug 15;15(16):5620-8. Epub 2007 May 18.
Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y.

From: https://www.ncbi.nlm.nih.gov/pubmed/17553685

Abstract

alpha-Mangostin, a xanthone from the pericarps of mangosteen (Garcinia mangostana Linn.), was evaluated for in vitro cytotoxicity against human colon cancer DLD-1 cells. The number of viable cells was consistently decreased by the treatment with alpha-mangostin at more than 20 microM. The cytotoxic effect of 20 microM alpha-mangostin was found to be mainly due to apoptosis, as indicated by morphological findings. Western blotting, the results of an apoptosis inhibition assay using caspase inhibitors, and the examination of caspase activity did not demonstrate the activation of any of the caspases tested. However, endonuclease-G released from mitochondria with the decreased mitochondrial membrane potential was shown. The levels of phospho-Erk1/2 were increased in the early phase until 1h after the start of treatment and thereafter decreased, and increased again in the late phase. On the other hand, the level of phospho-Akt was sharply reduced with the process of apoptosis after 6h of treatment. Interestingly, the level of microRNA-143, which negatively regulates Erk5 at translation, gradually increased until 24h following the start of treatment. We also examined the synergistic growth suppression in DLD-1 cells by the combined treatment of the cells with alpha-mangostin and 5-FU which is one of the most effective chemotherapeutic agents for colorectal adenocarcinoma. The co-treatment with alpha-mangostin and 5-FU, both at 2.5 microM, augmented growth inhibition compared with the treatment with 5 microM of alpha-mangostin or 5 microM 5-FU alone. These findings indicate unique mechanisms of alpha-mangostin-induced apoptosis and its action as an effective chemosensitizer.

 

γ-Mangostin, a xanthone from mangosteen, attenuates oxidative injury in liver via NRF2 and SIRT1 induction

Abstract

γ-Mangostin (γ-man), an active compound from Garcinia mangostana L., has been discovered as a hepatoprotective agent against oxidative injury. However, the underlying mechanisms remained unclear. The current study showed that γ-man stimulated the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) to enhance antioxidant capacity under oxidative stress, which was partially reversed by treatment of the NRF2 inhibitor, all-trans-retinoic acid. Moreover, γ-man increased the expression and activity of SIRT1 (silent mating type information regulation 2 homolog 1), which facilitated the deacetylation of peroxisome proliferator-activated receptor γ coactivator 1α to improve the mitochondrial function in L02 cells. The protective effect of γ-man was partially blocked by treatment of the SIRT1 inhibitor tenovin-1 or SIRT1 knockdown. In vivo studies showed γ-man protected mice from carbon tetrachloride-induced acute liver injury, through up-regulation of NRF2 and SIRT1. Thus, γ-man might be a candidate to protect liver from acute oxidative injury.

SUMMARY

Mangosteen is an important fruit full of polyphenols, anthocyanins, antioxidants, xanthones, and Nrf2 activators that help to make Ultimate Protector+ such an outstanding nutritional supplement.

Mangosteen
MANGOSTEEN, Garcinia mangostana—Painted by Dr. M.J. Dijkman

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like

QUICKSILVER LIPOSOMAL FORMULAS – NEW PRODUCTS!

One of the most significant developments for nutrient uptake and assimilation is the advent of liposomal delivery systems.…
Read More

ELECTROMAGNETIC FIELDS (EMF) AND NUTRITIONAL SUPPLEMENTS

We live in a digital world enjoying convenient and limitless access to people, information, and the Internet of…
Read More

THE NEED FOR IODINE SUPPLEMENTATION

The Orthomolecular Medicine News Service (OMNS) published on June 12 “The Need for Iodine Supplementation.” We believe strongly…
Read More